• Механическая обработка и изготовление деталей из металла
  • Комплектация производства промышленным оборудованием
  • Комплексная поставка микроэлектронных компонентов
+7(342)203-78-58
Тех.отд: +7-922-308-78-81

Три д принтер возможности: примеры и перспективы использования в домашних условиях, быту, образования и коммерческих целях

Опубликовано: 30.01.2021 в 16:23

Автор:

Категории: Пневмоинструмент

Содержание

примеры и перспективы использования в домашних условиях, быту, образования и коммерческих целях


Создание реальных объектов из цифровых моделей казалось чем-то недостижимым, из мира фантастики. Однако технический прогресс движется вперед. Одним из показательных результатов его стремительного развития стали 3D-принтеры — устройства для трехмерного моделирования. Еще недавно установки стоили «как крыло Боинга», и только в последнее десятилетие 3D-печать стала доступна всем потребителям. Спрос на принтеры увеличился благодаря разработке современных отечественных и зарубежных моделей эконом-класса с интуитивно понятным интерфейсом.


Ознакомьтесь с возможностями аддитивных технологий. Это хороший способ владельцам принтеров расширить кругозор, а предпринимателям — увидеть перспективные направления в малом бизнесе.

Содержание:

  1. Особенности 3D-принтеров
  2. Использование 3D-принтеров в домашних условиях
  3. В космической промышленности
  4. В авиации
  5. В архитектуре
  6. Оружие
  7. Одежда
  8. Искусство
  9. Медицина
  • Планирование хирургических вмешательств
  • Изготовление протезов
  • Биопечать
  • Стоматология
  • Продукты питания
  • Персонажи
  • Домашние роботы
  • Музыкальные инструменты
  • Обувь
  • Медикаменты
  • Автомобилестроение
  • Кастомизация и молдинг
  • Мебель
  • Ювелирная отрасль
  • Строительство
  • Образование
  • Итог
  • Особенности 3D-принтеров


    Трехмерные принтеры — оборудование для печати физического объекта на основе его цифровой 3D-модели. Работа большинства устройств построена на базе послойного наплавления материала или поэтапного застывания фотополимерной смолы. В качестве «расходников» в них используют всевозможные виды пластика, металлическую пудру, строительные смеси, стеклянный порошок и другое сырье.


    Существует несколько видов технологий печати, различных по принципу работы, свойствам материалов, используемого ПО:

    • плавление или спекание порошка;
    • фотополимеризация;
    • экструзия;
    • лазерная стереолитография;
    • ламинирование.


    С помощью принтеров можно создавать модели любой формы и сложности исполнения. 3D-печать позволяет сократить себестоимость изготовленной продукции и ускорить производственный процесс.

    Использование 3D-принтеров в домашних условиях


    Технология 3D-моделирования нашла применение в разных целях в быту. Напечатать дома на принтере крючок в прихожую, чехол для смартфона, планшета, игрушку для ребенка — легко. Для этого нужно выполнить ряд задач:

    • сделать цифровую модель объекта на компьютере или скачать готовый шаблон;
    • поделить заготовку на множество поперечных слоев с помощью специального программного обеспечения;
    • запустить устройство для печати — послойного наращивания изделия.


    Принтер станет помощником в доме. Поясним: нас окружают многочисленные пластиковые детали, которые нередко выходят из строя или теряются. Совсем не кстати может сломаться ручка у стиральной машины, развалиться шестеренка блендера или треснуть какая-нибудь хрупкая кнопка. С помощью 3D-принтера воссоздать сломанный элемент из полимера — не проблема, а увлекательный творческий процесс.


    Устройства для 3D моделирования позволяют напечатать предметы обихода или декор в любое помещение в доме:

    • на кухню — крючки для полотенец, держатели для салфеток, полочку под специи, кухонные принадлежности;
    • в ванную — мыльницы, полочки под шампуни, гели для душа;
    • в спальную — плафоны для осветительных приборов;
    • в рабочий кабинет — органайзеры, карандашницы;
    • в гостиную — вазы, статуэтки, рамки для фотографий, горшки для цветов и многое другое.


    При желании можно организовать «свое дело» из дома. Изготовление с помощью принтера на продажу оригинальных елочных и детских игрушек, сувениров, сумочек для телефонов, планшетов — прибыльная идея.

    В космической промышленности


    Трехмерное моделирование — перспективная технология в аэрокосмической сфере. И ее уже активно применяют. Производитель SpaceX анонсировал космический корабль Dragon v2 с, его двигатель собран с использованием напечатанных деталей.


    Трехмерную печать используют и в космосе. В 2016 году NASA на МКС был отправлен промышленный принтер, способный работать в условиях вакуума. С его помощью астронавты смогут напечатать нужный предмет или деталь, сократив тем самым время на ожидание поставки с Земли.

    В авиации


    Аддитивным технологиям нашлось место и в авиационной промышленности. Boeing и корпорация из Америки Lockheed Martin разработали детали двигателя, несущие компоненты и системы вентиляции, полученные лазерным спеканием.

    В архитектуре


    Возможность создавать виртуальные, а затем и печатные трехмерные модели — прорыв в области архитектуры и дизайна. С помощью принтеров легко изготовить макет будущего здания для точной визуализации его особенностей, презентации инвесторам или покупателям. Макеты в архитектуре применяют давно, но именно печать ведет к ускорению и облегчению разработки проекта.

    Оружие


    Трехмерные технологии не всегда используются во благо. Печать оружия — яркий тому пример. Даже на бюджетных принтерах можно напечатать функциональный пластиковый пистолет. От одного выстрела он разрушится, но даже единственное нажатие на курок может стоить человеку жизни.


    Однако считается, что у людей должна быть возможность самообороны. Так, сотрудники компании Defence Distributed выложили в сеть трехмерные модели пистолета Liberator. Также они изготавливают запчасти для автомата Калашникова и винтовки AR-15. С ними возможно собрать оружие, используя принтер и доступные расходные материалы.

    Одежда


    Полиамидные порошки — подходящие материалы для одежды и нательного белья. Напечатанные нейлоном вещи отличаются необычной формой, они сочетают высокие показатели прочности с эластичностью.


    Сотрудники дизайнерской лаборатории из Нью-Йорка Continuum Fashion представили печатную одежду на одном из показов мод. Анонсированные модели — не экспериментальные: их можно купить на сайте Shapeways.

    Искусство


    Создать восковую реплику Давида Донателло или Венеры Милосской — почему бы и нет? При желании копии известных скульптур из воска можно приобрести, но они обойдутся дорого, да и продаются не везде. Трехмерный принтер выручит поклонников искусства: загрузите в устройство цифровую модель, выберите материал для печати и приступите к изготовлению реплики. Трехмерное изображение оригинала можно получить из обычного фото с его последующей конвертацией в 3D. Или воспользоваться ручным 3D-сканером с возможностью съемки габаритных изделий.

    Медицина


    Трехмерное моделирование используется в различных медицинских направлениях.

    Планирование хирургических вмешательств


    Тщательная подготовка — залог успешно проведенной операции. С помощью сканеров получают изображение необходимой зоны тела, из виртуальной модели распечатывают копию. С ней хирургам легче смоделировать операцию: опробовать разные сценарии, выполнить тестирование инструмента, рассчитать тайминг.

    Изготовление протезов


    3D-принтеры применяют в протезировании. Они позволяют создавать протезы, соответствующие анатомическим особенностям пациента. Производитель из Швеции Arcam занимается созданием устройств для электронно лучевой плавки. Их задача — выполнение цельных металлических конструкций, включая титановые. Они применяются в протезировании для замены суставов, костей или конечностей.

    Биопечать


    Инженеры разрабатывают органические имитаторы, аналогичные по свойствам и структуре натуральным тканям. Печатать сосуды, мышцы или цельные органы — все это стало возможным. До трансплантации печатных органов дело пока не дошло, но работы ведутся. Параллельно идет разработка методов восстановления поврежденных костей и хрящей. В медицине нашли применение «биоручки 3D», которыми наносят живые клетки на травмированные ткани для их заживления.

    Стоматология


    Стоматологические скобы из пластика, коронки, протезы, челюстные имплантанты — все это быстро и выгодно можно изготовить на 3D-принтере. Инженеры компании Align Technology разработали методику, при которой выполняют сканирование ротовой полости и последующее изготовление индивидуальных протезов. Здесь задействуют технологию полимеризации жидких смол, она обеспечивает высокую степень точности готовых конструкций.

    Продукты питания


    Печатать фаршем, сахарным сиропом, расплавленным шоколадом — выдумка? Вовсе нет! Пищевые принтеры перестали быть прерогативой сказок и фантастических фильмов. Они способны изготавливать еду необычной формы.


    Компания из Британии Cadbury пользуется 3Д-принтерами для выполнения прессовочных трафаретов и прототипов сладостей, для которых требуется сложная производственная линия. Итальянская Barilla использует установки для изготовления макарон, немецкая Biozoon Food Innovations — блюд для пожилых людей.


    Популярное устройство для производства еды — Foodini. Принтер работает с любым пастообразным сырьем. Его недостаток — плохая температурная обработка еды, но и его, возможно, вскоре устранят.

    Персонажи


    Создание коллекции из героев фильмов, комиксов, игр, фигурок известных личностей стало возможным с 3D-принтерами. Хотите небольшую реплику гигантского робота, Халка, Железного Человека? Их можно напечатать даже на компактном настольном принтере. Сбор коллекции любимых персонажей доступен каждому.

    Домашние роботы


    Компания Arduino, занимающаяся выпуском недорогих плат, позволила пользователям проектировать различные электронные устройства. Многие взяли идею на вооружение для оборудования системы «умный дом». Все, что нужно: напечатать корпус, установить сервопривод, плату и получить домашнего робота.


    В помощь людям, не разбирающимся в пайке или программировании, специалисты из Массачусетского института разрабатывают проект по автоматизации построения роботов. По плану потребуется задать функции будущего устройства, подобрать дизайн — система сама отправит на печать нужные детали.

    Музыкальные инструменты


    Принтеры могут печатать барабаны, гитары, флейты, скрипки. Да, профессиональные музыканты могут усомниться в их качестве, поскольку ценные экземпляры проектируют годами, а служат они десятками лет. Напечатанный инструмент не сможет стать достойной альтернативой. Но никто не говорит, что он весь должен быть из пластика. Принтер можно использовать для распечатки отдельных частей, например, грифа или деки. За счет трехмерных машин получится смастерить необычные по форме и дизайну инструменты.

    Обувь


    На принтерах можно печатать босоножки, сапоги, туфли, сланцы или отдельные части обуви: стельки, каблуки, подошвы. Для этого подойдет нейлон или другие гибкие материалы (Ninjaflex, FilaFlex). Преимущества напечатанной обуви — соответствие анатомическим особенностям ноги, удобство, стойкость к износу. Приятный бонус — возможность производства уникальных по внешнему виду изделий с ажурными каблуками, увивающими тонкую шпильку цветами.


    Напечатанная обувь уже стала героем модных показов, но не за горами то время, когда она станет доступна массовому потребителю.

    Медикаменты


    3D-печать доказала перспективы в фармацевтике при печати препаратов. Ее достоинства:

    • до 50% выше сохранения свойств средства по сравнению со стандартным производством;
    • точная дозировка вещества;
    • сокращение сроков изготовления лекарства;
    • возможность производить препараты по индивидуальному рецепту.


    С новыми технологиями работает организация Organovo. Инженеры задействуют гелевый материал для точного соединения компонентов. 3Д-принтеры не подходят для серийного запуска медикаментов. Но они нашли применение при изготовлении лекарств по индивидуальным рецептам.

    Автомобилестроение


    Многие механизмы для автомобилей можно напечатать. В мире уже есть примеры применения изготовленных на принтерах компонентов. Отличилась «Формула-1», она задействовала в болидах печатные детали. Американская Local Motors вовсе анонсировала автомобиля, корпус которого произведен только из напечатанных деталей.


    Пока что массовое производство запчастей на принтерах экономически нецелесообразно — обходится дорого.

    Кастомизация и молдинг


    Добавление декоративных элементов в готов изделия — оригинальный способ их обновления, преображения. Плетеные абажуры для бра, необычная рама для велосипеда, машина с авторским тюнингом привлекут внимание, ведь аналогов собственному производству нет.

    Мебель


    Нет, мы не только про игрушечные предметы. 3D-принтеры позволяют производить мебель, которую сложно отличить от «традиционных» изделий. Такого результата удается добиться за счет задействования специального пластика с добавлением микроопилок. Например, материалу Laywoo-D3 присущ свойственный древесине запах.


    Можно печатать что угодно: столы, табуретки, полки, стулья, тумбочки. Изделия легки в механической обработке, их допускается покрывать краской, лакировать.


    В мире есть примеры создания металлической мебели. Дизайнер из Голландии Йорис Лаарман спроектировал агрегат для 3Д-печати без применения лазера и вакуумных камер. Машины 3D задействуют для рисования металлом по воздуху — отличный вариант для получения интересной мебели с изящным плетеным дизайном.

    Ювелирная отрасль


    3D-печать помогает снизить и ускорить производство ювелирных украшений за счет дешевых расходных материалов. Благодаря принтерам ювелиры могут изменять дизайн драгоценностей и быстро производить прототипы.


    Преимущества 3D-технологии:

    • упрощение запуска ювелирного производства;
    • получение качественных украшений: ровных, гладких, с высокой детализацией;
    • экономичность — исключение рисков нерационального расхода драгоценных металлов.


    Применение 3D-печати актуально для многих брендов, в числе которых Cityscape Rings, Lace, Radian, Ross Lovegrove и другие.

    Строительство


    3D-печать зданий стала достижимой. Для постройки сооружений берется смесь, включающая цемент, наполнитель, пластификатор и другие добавки. Строительный состав выдавливается из сопла экструдера послойно, повторяя компьютерную модель. 3Д-принтеры упрощают и ускоряют возведение сооружений, ведут к снижению объема отходов и затрат ручного труда.


    В мире пока еще нет идеальной машины для 3D строительства, но разработки ведутся. Китайская организация Winsun выпустила аппарат больших размеров (60х100х400см) для производства пола, стен с необходимыми отверстиями и нишами для инженерных коммуникаций. Его минус — неподвижность (готовое строение потребуется переместить на другое место).


    Ученые из Испании, наоборот, проектируют небольшие роботизированные системы. Их принцип функционирования основан на креплении к готовым элементам постройки и возведении следующих частей. Время покажет, какие из строительных аппаратов окажутся более предпочтительными.

    Образование


    3Д-Принтеры доступны не только для крупных компаний и ведущих научных центров. Цены на эконом-модели стартуют от нескольких тысяч, что делает их популярными сфере образования. Их закупают для оборудования школ, средне специальных и высших учебных заведений.


    Преимущества 3D-печати в образовании:

    1. Наглядное обучение наукам. Учитель сможет показать разрез двигателя, человеческие кости или объемную модель водорода — все это станет хорошей мотивацией к обучению.
    2. Развитие у обучающихся воображения и творческого подхода. Моделирование 3D развивает пространственное мышление, помогает визуализировать плоды воображения.

    Подведем итоги


    3D-принтеры — самая удивительная техника последнего времени. Изначально она была доступна для исследователей, научных деятелей, а теперь недорогой станок можно купить для развлечения. С ним доступно создание различных изделий и предметов, конструирование объектов, разработка необычного дизайна для обыденных вещей. В производстве сфера использования устройств поражает: с их помощью можно печатать все: от еды до архитектурных сооружений. Вероятно, такие машины вскоре станут привычной техникой, вроде пылесоса, холодильника или телевизора.


    Однако повсеместное использование на производствах такой техники все же не так радужно. 3D-моделированию присущи недостатки, которые делают серийное производство невыгодным. Не все установки соединяют разные виды пластика, многие их них не могут работать с различными оттенками и температурами. Такие возможности присущи дорогим станкам. При их применении себестоимость напечатанного изделия в несколько десятков раз превысит себестоимость обычного предмета. 3D-печать эффективнее применять для производства уникальной продукции, где важна точность детализации.


    Даже при устранении всех недочетов, массовая 3D-печать не предрекает ничего хорошего. Спрос на промышленные товары сократится в десятки раз, экономика обрушится. Также появятся проблемы с нарушением авторских прав при копировании уникальных предметов.



    Приобрести домашние, профессиональные и промышленные 3D принтеры, другую ЧПУ или 3Д технику и расходные материалы, задать свой вопрос, или сделать предложение, вы можете, связавшись с нами:


    • По телефону: 8(800)775-86-69


    • Электронной почте: [email protected]


    • Или на нашем сайте: https://3dtool.ru/


    Так же мы выкладываем наши материалы в Telegram канале, на Zen Yandex и в нашей группе ВКонтакте

    на что способен 3D принтер

    Возможности 3D печати

    К сожалению, нынешний уровень осведомленности в 3D технологиях оставляет желать лучшего. Случается, что даже при наличии базовых знаний о 3D принтерах, реальное применение 3D печати остается непонятным для ряда пользователей. Во избежание возникновения подобных ситуаций мы подготовили эту статью и подробно рассмотрим все возможности 3D печати.

    Применение 3D печати

    Если говорить о применении 3D печати, стоит учитывать не только существующие возможности, но и перспективы. Уже сегодня применение технологии 3D печати чрезвычайно обширно и не прекращает расширяться. Безусловно, в будущем нас ожидает масштабное распространение аддитивных методик, но практическое применение 3D печати доступно каждому уже сегодня. Мы не станем углубляться в узко специфические аспекты технологий, такие как пищевая 3D печать, или биопринтинг. Вместо этого поговорим о том, какое применение технологии 3D печати могут найти обычные пользователи с помощью настольных 3D принтеров.

    1. Прототипирование

    Самый лучший способ применения 3D печати – по ее прямому назначению. Быстрое прототипирование является не только вторым названием методики, но и изначальной целью ее разработки. Создание опытных образцов с помощью 3D печати значительно сокращает время и издержки производства. А благодаря возможностям 3D моделирования спектр проектируемых деталей практически не ограничен. Прототипирование позволяет наглядно оценить возможные недостатки изделия еще на этапе проектирования и внести существенные изменения в конструкцию детали еще до ее окончательного утверждения.

    2. Мелкосерийное производство

    Для мелкосерийного производства 3D печать – просто находка. Свойства многих материалов позволяют производить готовые компоненты с минимальными затратами. Сравнительно с традиционными методами производства, мелкосерийное производство с помощью 3Д печати очень выгодно с финансовой точки зрения. Изготовление, к примеру, литейных форм, представляет собой длительный и дорогостоящий процесс. При этом, само литье под давлением занимает немало времени. На 3Д принтере же напечатать партию необходимых изделий можно в считанные часы. Это применение 3D печати крайне актуально при частых заказах на небольшие партии деталей.

    3. Ремонт и восстановление

    Еще одно применение 3D печати – ремонт и восстановление поврежденных деталей. Для этих целей 3Д печать подходит идеально. Проводить такую процедуру можно как самостоятельно, при наличии соответствующих навыков и оборудования, так и в специализированных сервисах 3Д печати, таких как 3DDevice. Сперва на основе поврежденного изделия строится верная 3D модель. Для упрощения проектирования также может быть использовано 3D сканирование. Далее готовая модель отправляется в печать и воспроизводится на 3Д принтер в нужном количестве экземпляров. Ремонт и восстановление поврежденных деталей с помощью 3D печати происходит быстро, а наличие цифровой модели компонента позволяет заново отпечатать его в любое время.

    4. Производство функциональных моделей и готовых компонентов

    Одна из разновидностей промышленного применения 3D печати – производство функциональных моделей и готовых компонентов. Изготовление изделий на 3Д принтере из прозрачного материала позволяет увидеть работу функциональной детали «изнутри», что очень полезно при разработке различных инженерных образцов. Кроме того, широкий спектр разнообразных материалов для 3Д печати превращает ее в полноценный производственный инструмент. Промышленные 3D принтеры постепенно становятся частью каждой сферы производства, позволяя изготовлять прочные металлические компоненты.

    Другие вопросы и ответы о 3D принтерах и 3D печати:

    • Возможности Какие перспективы 3D печати в будущем?
    • Финансы Как правильно выбрать 3D принтер?

    5. Бытовые предметы

    Нужен органайзер для канцелярии? Или подставка для ножей? Любые бытовые предметы можно напечатать на 3Д принтере. Преимущество такого применения 3D печати в том, что при разработке 3D моделей нет никаких ограничений. То есть, при желании проявить фантазию и создать нечто оригинальное – все карты в ваших руках. Благодаря 3Д печати свой дом можно украсить и сделать более функциональным легко и недорого.

    6. Игрушки и сувениры

    При наличии 3D принтера порадовать ребенка очень просто – достаточно изготовить симпатичные 3D игрушки. Уже существует несколько довольно интересных проектов коллективных 3Д-печатных игр, а в дальнейшем этот список будет только расширяться. Это применение 3D печати порадует не только детей, но и увлеченных коллекционеров, ведь на 3Д-принтере можно напечатать фигурки любых персонажей и атрибутов компьютерных игр и фильмов. А цветная 3Д печать позволит изготовить эксклюзивные полноцветные сувениры – миниатюрные фигурки реальных людей. Для этого цифровая модель человека формируется на основе данных 3D-сканирования. При этом все текстуры и данные о цвете сохраняются. Такой подарок точно придется по вкусу каждому, ведь получить крошечную копию самого себя так необычно.

    7. Дизайнерские изделия

    Для творческих людей существует еще одно применение 3D печати. 3Д-технологии в целом – это уникальная возможность проявить свой талант самым необычным образом. Художники, скульпторы, модельеры и дизайнеры со всего мира используют 3Д печать для создания эксклюзивных предметов искусства, изготовить которые стандартными методами было бы невозможно. Такие дизайнерские изделия впечатляют своей красотой и оригинальностью, часто объединяя цифровое и традиционное искусство. Кроме того, активно разрабатываются методики 3Д печати одежды и обуви. Некоторые модели уже даже поступили в продажу, но о массовом производстве пока рано говорить.

    8. Способности 3D принтера

    Основные способности 3D принтера мы перечислили, но на этом они не заканчиваются. 3Д-печать находит применение в самых разнообразных отраслях. С ее помощью печатают электронику, различные комплектующие, еду и даже живые ткани. Безусловно, этот список будет пополняться в дальнейшем, но уже сейчас он впечатляет своим масштабом. Надеемся, мы смогли доступно подать информацию о существующем применении 3Д-печати. Если у Вас имеются дополнительные вопросы, которые мы не затронули, пишите нам на электронную почту и мы, в случае необходимости, добавим и Ваши вопросы! С уважением, коллектив компании 3DDevice.

    Кроме того, наша компания предоставляет услуги 3Д печати, 3Д сканирования и 3Д моделирования любой сложности по лучшим ценам на рынке Украины. В интернет-магазине 3DDevice представлен широкий ассортимент товаров (3Д принтеры, 3Д сканеры) и расходных материалов (пластик и смолы). По всем вопросам пишите нам на электронную почту, или звоните по одному из этих телефонов. Будем рады сотрудничеству!

    Вернуться на главную

    возможностей 3D-печати | МДж Инжиниринг

    [это шаблон страницы]

    [et_pb_section fb_built=”1″ _builder_version=”3.17.6″ background_color=”#cecece”][et_pb_row _builder_version=”3.17.6″][et_pb_column type=”4_4″ _builder_version=”3.17.6″ parallax=”off ” parallax_method=”on”][et_pb_text _builder_version=”3.17.6″ custom_margin=”5px||”]

    [/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ _builder_version =”3.17.6″ border_width_bottom=”5px” border_color_bottom=”#5f0001″][et_pb_row custom_padding=”60px|0px|60px|0px|false|false” _builder_version=”3.0.48″ background_size=”initial” background_position=” top_left” background_repeat=”repeat”][et_pb_column type=”1_3″ _builder_version=”3. 0.47″ parallax=”off” parallax_method=”on”][et_pb_image src=”https://www.mjengineering.com/wp- контент/загрузки/2019/08/1.jpg” _builder_version=”3.17.6″][/et_pb_image][/et_pb_column][et_pb_column type=”2_3″ _builder_version=”3.0.47″ parallax=”off” parallax_method=”on”][et_pb_text _builder_version=»3.17.6″]

    Компания MJ Engineering теперь предлагает услуги 3D-печати, и мы с гордостью демонстрируем наше последнее приобретение — 3D-принтер Markforged для моделирования методом наплавления (FDM).

    [/et_pb_text][et_pb_text _builder_version=»3.17.6″]

    Что такое 3D-печать?

    3D-печать или аддитивное производство — это процесс создания трехмерных твердых объектов из цифрового файла. Чтобы построить объект, принтер укладывает один слой материала за раз, точно следуя дизайну в компьютерной программе. Объект может быть изготовлен из различных материалов, включая пластик и пластик, армированный углеродным волокном или кевларом. Печать детали может занять от 45 минут до 24 часов, что намного быстрее, чем при использовании большинства традиционных методов производства.

    [/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”3.17.6″ background_color=”#cecece” border_width_top=”3px” border_color_top=”#5f0001″ border_width_bottom =”3px” border_color_bottom=»#5f0001″ custom_margin=»2px||2px»][et_pb_row custom_padding=»60px|0px|60px|0px|false|false» _builder_version=»3.0.48″ background_size=»initial» background_position= ”top_left” background_repeat=”повторить”][et_pb_column type=”2_3″ _builder_version=”3.0.47″ parallax=”выкл” parallax_method=”вкл”][et_pb_text _builder_version=”3.17.6″]

    Количество компаний, решивших использовать 3D-принтеры, растет! Возможность быстро напечатать деталь для решения проблемы может значительно сэкономить время и деньги. Вот некоторые преимущества 3D-печати:

    • Скорость изготовления деталей
    • Сложность и свобода дизайна
    • Персонализация
    • Повышенная гибкость производственного процесса
    • Нет отходов
    • Нет необходимости создавать специальные инструменты или использовать несколько инструментов

    [/et_pb_text][/et_pb_column][et_pb_column type=”1_3″ _builder_version=”3. 0.47″ parallax=”off” parallax_method=”on”][et_pb_image src=”https://www.mjengineering.com/ wp-content/uploads/2019/08/2.jpg» _builder_version=»3.17.6»][/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built=»1″ _builder_version=»3.17. 6″ border_width_top=”5px” border_color_top=”#5f0001″][et_pb_row custom_padding=”60px|0px|50px|0px|false|false” _builder_version=”3.0.48″ background_size=”initial” background_position=”top_left” background_repeat= ”повторить”][et_pb_column type=”4_4″ _builder_version=”3.0.47″ parallax=”выкл” parallax_method=”вкл”][et_pb_text _builder_version=”3.17.6″]

    Пусть MJ Engineering напечатает его для вас в 3D

    Наш 3D-принтер уже произвел революцию в эффективности и действенности того, как мы работаем здесь, в MJ Engineering, и теперь мы хотим поделиться им с вами. В конце концов, не у каждой компании есть достаточно ноу-хау или потребность в 3D-принтере, чтобы оправдать его покупку. Без проблем! Компания MJ Engineering уже сделала инвестиции. Если вам нужно быстро оценить, будет ли деталь работать, прежде чем отправлять ее в производство, или вы знаете, какая деталь вам нужна, и вам нужно, чтобы она была произведена быстро, — мы можем помочь. С нашим 3D-принтером мы можем создавать детали по мере необходимости, намного быстрее, чем в механическом цехе. Ознакомьтесь с примерами из практики Dunlop Systems и узнайте, как они производят нестандартные инструменты для своего предприятия, экономя десятки тысяч долларов благодаря своему 3D-принтеру Markforged. Это тематическое исследование очень похоже на работу MJ Engineering со своим собственным 3D-принтером Markforged.

    Посмотрите, как работает наш 3D-принтер

    Наши инженеры всегда находят новые практические применения для 3D-принтера; они используют его для решения проблем практически каждый день. На самом деле, он почти не переставал работать с тех пор, как мы его получили!

    «Приятно сидеть и смотреть; это красивая машина».
    – Ричард Ванд, президент MJ Engineering ][et_pb_row custom_padding=”60px|0px|60px|0px|false|false” _builder_version=”3.0.48″ background_size=”initial” background_position=”top_left” background_repeat=”repeat”][et_pb_column type=”4_4″ _builder_version= ”3.0.47″ parallax=”выкл” parallax_method=”вкл”][et_pb_blog fullwidth=”выкл” include_categories=”29″ show_thumbnail=»off» _builder_version=»3.17.6″ box_shadow_style=»preset3″ box_shadow_blur=»14px»][/et_pb_blog][/et_pb_column][/et_pb_row][/et_pb_section]

    Что такое 3D-печать? Как работает 3D-принтер? Изучите 3D-печать

    3D-печать или аддитивное производство — это процесс создания трехмерных твердых объектов из цифрового файла.

    Создание 3D-печатного объекта достигается с помощью аддитивных процессов. В аддитивном процессе объект создается путем укладки последовательных слоев материала до тех пор, пока объект не будет создан. Каждый из этих слоев можно рассматривать как тонко нарезанный поперечный разрез объекта.

    3D-печать — это противоположность субтрактивному производству, при котором вырезается / выдалбливается кусок металла или пластика, например, на фрезерном станке.

    3D-печать позволяет изготавливать сложные формы с использованием меньшего количества материала, чем традиционные методы производства.

    Содержание

    • Как работает 3D-печать?
    • Промышленность 3D-печати
    • Примеры 3D-печати
    • Технологии и процессы 3D-печати
    • Материалы
    • Услуги

    Перейти к интересующей вас области:

    • Быстрое прототипирование и производство
    • Автомобилестроение
    • Авиация
    • Строительство
    • Товары народного потребления
    • Здравоохранение
    • Еда
    • Образование

    Перейти к процессу:

    • Все технологии и процессы
    • Ванная фотополимеризация
    • Струйная обработка материала
    • Струйная обработка связующего
    • Экструзионный материал
    • Порошковая кровать Fusion
    • Листовое ламинирование
    • Направленное выделение энергии

    Как работает 3D-печать?

    Все начинается с 3D-модели. Вы можете создать его с нуля или загрузить из 3D-библиотеки.

    Программное обеспечение для 3D

    Существует множество различных программных инструментов. От промышленного класса до открытого. Мы создали обзор на нашей странице программного обеспечения для 3D.

    Мы часто рекомендуем новичкам начать с Tinkercad. Tinkercad бесплатен и работает в вашем браузере, вам не нужно устанавливать его на свой компьютер. Tinkercad предлагает уроки для начинающих и имеет встроенную функцию экспорта вашей модели в виде файла для печати, например .STL или .OBJ.

    Теперь, когда у вас есть файл для печати, следующим шагом будет подготовка его для вашего 3D-принтера. Это называется нарезкой.

    Нарезка: от файла для печати до 3D-принтера

    Нарезка в основном означает нарезку 3D-модели на сотни или тысячи слоев и выполняется с помощью программного обеспечения для нарезки.

    Когда ваш файл нарезан, он готов для вашего 3D-принтера. Подача файла на ваш принтер может осуществляться через USB, SD или Wi-Fi. Ваш нарезанный файл теперь готов к 3D-печати слой за слоем .

    Промышленность 3D-печати

    Внедрение 3D-печати достигло критической массы, поскольку те, кому еще предстоит интегрировать аддитивное производство где-то в свою цепочку поставок, теперь составляют постоянно сокращающееся меньшинство. Если на ранних этапах 3D-печать подходила только для прототипирования и разового производства, то сейчас она быстро превращается в производственную технологию.

    Большая часть текущего спроса на 3D-печать носит промышленный характер. Acumen Research and Consulting прогнозирует, что к 2026 году мировой рынок 3D-печати достигнет 41 миллиарда долларов.

    По мере своего развития технологии 3D-печати суждено преобразовать почти все основные отрасли и изменить то, как мы живем, работаем и играем в будущем.

    Примеры 3D-печати

    3D-печать включает в себя множество форм технологий и материалов, поскольку 3D-печать используется практически во всех отраслях, о которых вы только могли подумать. Важно рассматривать его как кластер различных отраслей с множеством различных приложений.

    Несколько примеров:

    • – товары народного потребления (очки, обувь, дизайн, мебель)
    • – промышленные товары (производственные инструменты, прототипы, функциональные детали конечного использования)
    • – стоматологические изделия
    • – протезы
    • – архитектурные масштабные модели и макеты
    • – реконструкция окаменелостей
    • – воспроизведение древних артефактов
    • – реконструкция доказательств в судебной патологии
    • – реквизит для кино

    Быстрое прототипирование и быстрое производство

    С конца семидесятых годов компании используют 3D-принтеры в процессе проектирования для создания прототипов. Использование 3D-принтеров для этих целей называется быстрое прототипирование .

    Зачем использовать 3D-принтеры для быстрого прототипирования?
    Короче говоря, это быстро и относительно дешево. От идеи до 3D-модели и удерживания прототипа в руках — это вопрос дней, а не недель. Итерации проще и дешевле сделать, и вам не нужны дорогие формы или инструменты.

    Помимо быстрого прототипирования, 3D-печать также используется для быстрого производства . Быстрое производство — это новый метод производства, при котором предприятия используют 3D-принтеры для мелкосерийного производства по индивидуальному заказу.

    Автомобильная промышленность

    Производители автомобилей уже давно используют 3D-печать. Автомобильные компании печатают запасные части, инструменты, приспособления и приспособления, а также детали для конечного использования. 3D-печать позволила производить продукцию по требованию, что привело к снижению складских запасов и сокращению циклов проектирования и производства.

    Автолюбители по всему миру используют 3D-печатные детали для восстановления старых автомобилей. Одним из таких примеров является то, что австралийские инженеры напечатали детали, чтобы вернуть к жизни Delage Type-C. При этом им приходилось печатать детали, которые десятилетиями не производились.

    Авиация

    В авиационной промышленности 3D-печать используется по-разному. Следующий пример знаменует собой важную веху в производстве 3D-печати: GE Aviation напечатала на 3D-принтере 30 000 кобальт-хромовых топливных форсунок для своих авиационных двигателей LEAP. Они достигли этого рубежа в октябре 2018 года, и, учитывая, что они производят 600 штук в неделю на сорока 3D-принтерах, это, вероятно, намного больше, чем сейчас.

    Около двадцати отдельных деталей, которые ранее приходилось сваривать вместе, были объединены в один компонент, напечатанный на 3D-принтере, который весит на 25% меньше и в пять раз прочнее. Двигатель LEAP является самым продаваемым двигателем в аэрокосмической отрасли из-за его высокого уровня эффективности, а GE экономит 3 миллиона долларов на самолете за счет 3D-печати топливных форсунок, поэтому эта единственная напечатанная на 3D-принтере деталь приносит финансовую выгоду в сотни миллионов долларов.

    Топливные форсунки GE также использовались в Boeing 787 Dreamliner, но это не единственная напечатанная на 3D-принтере деталь в 787-м. компания Norsk Titanium. Norsk решила специализироваться на титане, потому что он имеет очень высокое отношение прочности к весу и довольно дорог, а это означает, что сокращение отходов, обеспечиваемое 3D-печатью, имеет более значительный финансовый эффект, чем по сравнению с более дешевыми металлами, где затраты на отходы материала легче усваивается. Вместо спекания металлического порошка с помощью лазера, как в большинстве металлических 3D-принтеров, Norsk Merke 4 использует плазменную дугу для плавления металлической проволоки в процессе, называемом быстрым плазменным осаждением (форма направленного энергетического осаждения), который может наносить до 10 кг титана. в час. Для изготовления титановой детали весом 2 кг обычно требуется 30-килограммовый блок титана, что приводит к образованию 28 кг отходов, но для 3D-печати той же детали требуется всего 6 кг титановой проволоки.

    Строительство

    Можно ли напечатать здание? — Да, это так. 3D-печатные дома уже коммерчески доступны. Некоторые компании печатают сборные детали, а другие делают это на месте.

    Большинство историй о печати бетона, которые мы рассматриваем на этом веб-сайте, посвящены крупномасштабным системам печати бетоном с довольно большими соплами для большой скорости потока. Он отлично подходит для укладки слоев бетона довольно быстро и с повторяемостью. Но для действительно сложной бетонной работы, в которой в полной мере используются возможности 3D-печати, требуется что-то более гибкое и с более тонким прикосновением.

    Потребительские товары

    Когда мы впервые начали вести блог о 3D-печати в 2011 году, 3D-печать не была готова для использования в качестве метода производства в больших объемах. В настоящее время существует множество примеров конечных потребительских товаров, напечатанных на 3D-принтере.

    Обувь

    Ассортимент Adidas 4D имеет полностью напечатанную на 3D-принтере промежуточную подошву и печатается в больших объемах. Тогда мы написали статью, объясняющую, как изначально Adidas выпускал всего 5 000 пар обуви для широкой публики, а к 2018 году планировал продать 100 000 пар обуви с AM.0003

    Похоже, что с последними версиями обуви они превзошли эту цель или находятся на пути к ее превзойдению. Обувь доступна по всему миру в местных магазинах Adidas, а также в различных сторонних интернет-магазинах.

    Очки

    По прогнозам, к 2028 году рынок очков, напечатанных на 3D-принтере, достигнет 3,4 миллиарда долларов. Быстро растущий сектор — это оправы для конечного использования. 3D-печать является особенно подходящим методом производства оправ для очков, потому что индивидуальные измерения легко обработать в конечном продукте.

    Но знаете ли вы, что линзы также можно печатать на 3D-принтере? Традиционные стеклянные линзы изначально не тонкие и легкие; они вырезаны из гораздо более крупного блока материала, называемого заготовкой, около 80% которого уходит в отходы. Если учесть, сколько людей носят очки и как часто им нужно покупать новую пару, 80% этих цифр — пустая трата времени. Вдобавок ко всему, лаборатории должны хранить огромные запасы заготовок, чтобы удовлетворить индивидуальные потребности своих клиентов в области машинного зрения. Наконец, однако, технология 3D-печати достаточно продвинулась, чтобы производить высококачественные индивидуальные офтальмологические линзы, избавляясь от отходов и затрат на складские запасы прошлого. В 3D-принтере Luxexcel VisionEngine используется отверждаемый УФ-излучением акрилатный мономер для печати двух пар линз в час, которые не требуют полировки или какой-либо последующей обработки. Фокусные области также можно полностью настроить так, чтобы определенная область линзы обеспечивала лучшую четкость на расстоянии, а другая область линзы обеспечивала лучшее зрение вблизи.

    Ювелирные изделия

    Существует два способа изготовления ювелирных изделий с помощью 3D-принтера. Вы можете использовать прямой или непрямой производственный процесс. Прямое относится к созданию объекта прямо из 3D-проекта, в то время как непрямое производство означает, что объект (шаблон), напечатанный в 3D, в конечном итоге используется для создания формы для литья по выплавляемым моделям.

    Здравоохранение

    В наши дни нередко можно увидеть заголовки об имплантатах, напечатанных на 3D-принтере. Часто эти случаи носят экспериментальный характер, из-за чего может показаться, что 3D-печать все еще является второстепенной технологией в сфере медицины и здравоохранения, но это уже не так. За последнее десятилетие компания GE Additive напечатала на 3D-принтере более 100 000 протезов тазобедренного сустава.

    Чаша Delta-TT, разработанная доктором Гвидо Граппиоло и LimaCorporate, изготовлена ​​из трабекулярного титана, который характеризуется правильной трехмерной шестиугольной структурой ячеек, имитирующей морфологию трабекулярной кости. Трабекулярная структура повышает биосовместимость титана, стимулируя врастание кости в имплантат. Некоторые из первых имплантатов Delta-TT все еще работают более десяти лет спустя.

    Еще один напечатанный на 3D-принтере медицинский компонент, который хорошо справляется с тем, чтобы оставаться незамеченным, — это слуховой аппарат. Почти каждый слуховой аппарат за последние 17 лет был напечатан на 3D-принтере благодаря сотрудничеству компаний Materialise и Phonak. Компания Phonak разработала Rapid Shell Modeling (RSM) в 2001 году. До появления RSM изготовление одного слухового аппарата требовало девяти трудоемких операций, включающих ручную лепку и изготовление слепков, и результаты часто были неудовлетворительными. С RSM техник использует силикон, чтобы сделать слепок ушного канала, этот слепок сканируется в 3D, и после небольшой настройки модель печатается в 3D на полимерном 3D-принтере. Электроника добавляется, а затем отправляется пользователю. Используя этот процесс, сотни тысяч слуховых аппаратов ежегодно печатаются на 3D-принтере.

    Стоматология

    В стоматологической отрасли мы видим, что формы для прозрачных капп являются, пожалуй, самыми 3D-печатными объектами в мире. В настоящее время формы печатаются на 3D-принтере с использованием процессов 3D-печати на основе смолы и порошка, а также с помощью струйной печати материала. Коронки и зубные протезы уже печатаются на 3D-принтере вместе с хирургическими шаблонами.

    Биопечать

    В начале двухтысячных годов технология 3D-печати изучалась биотехнологическими фирмами и академическими кругами для возможного использования в приложениях тканевой инженерии, где органы и части тела создаются с использованием струйных технологий. Слои живых клеток осаждаются на гелевой среде и медленно наращиваются, образуя трехмерные структуры. Мы называем эту область исследований термином «биопечать».

    Продукты питания

    Аддитивное производство давно проникло в пищевую промышленность. Такие рестораны, как Food Ink и Melisse, используют это как уникальное преимущество для привлечения клиентов со всего мира.

    Образование

    Преподаватели и учащиеся уже давно используют 3D-принтеры в своих классах. 3D-печать позволяет учащимся материализовать свои идеи быстрым и доступным способом.

    Хотя дипломы по аддитивному производству появились относительно недавно, университеты уже давно используют 3D-принтеры в других дисциплинах. Есть много образовательных курсов, которые можно пройти, чтобы заняться 3D-печатью. Университеты предлагают курсы по вещам, связанным с 3D-печатью, таким как САПР и 3D-дизайн, которые на определенном этапе можно применить к 3D-печати.

    Что касается прототипирования, многие университетские программы обращаются к принтерам. Есть специализации в аддитивном производстве, которые можно получить, получив степень в области архитектуры или промышленного дизайна. Печатные прототипы также очень распространены в искусстве, анимации и исследованиях моды.

    Типы технологий и процессов 3D-печати

    Американское общество испытаний и материалов (ASTM) разработало набор стандартов, классифицирующих процессы аддитивного производства по 7 категориям. Это:

    1. Частная фотополимеризация
      1. Стереолитография (SLA)
      2. Цифровая обработка света (DLP)
      3. Непрерывное производство жидкостного интерфейса (CLIP)
    2. Струйная обработка материала
    3. Струйная обработка связующего
    4. Экструзия материалов
      1. Моделирование методом наплавления (FDM)
      2. Производство плавленых нитей (FFF)
    5. Порошковая кровать Fusion
      1. Многоструйный синтез (MJF)
      2. Селективное лазерное спекание (SLS)
      3. Прямое лазерное спекание металла (DMLS)
    6. Листовое ламинирование
    7. Направленное выделение энергии

    Фотополимеризация в ванне

    3D-принтер, основанный на методе фотополимеризации в ванне, имеет контейнер, заполненный фотополимерной смолой. Смола затвердевает с помощью источника УФ-излучения.

    Схемы фотополимеризации в ванне. Источник изображения: lboro.ac.uk

    Стереолитография (SLA)

    SLA была изобретена в 1986 году Чарльзом Халлом, который в то же время основал компанию 3D Systems. В стереолитографии используется чан с жидкой отверждаемой фотополимерной смолой и ультрафиолетовый лазер для создания слоев объекта по одному. Для каждого слоя лазерный луч прослеживает поперечное сечение рисунка детали на поверхности жидкой смолы. Воздействие ультрафиолетового лазерного излучения отверждает и затвердевает рисунок, нанесенный на смолу, и сплавляет его с нижележащим слоем.

    После трассировки шаблона платформа подъемника SLA опускается на расстояние, равное толщине одного слоя, обычно от 0,05 мм до 0,15 мм (от 0,002″ до 0,006″). Затем заполненное смолой лезвие проходит по поперечному сечению детали, повторно покрывая ее свежим материалом. На этой новой жидкой поверхности прослеживается рисунок последующего слоя, присоединяясь к предыдущему слою. В зависимости от объекта и ориентации печати SLA часто требует использования структур поддержки.

    Цифровая обработка света (DLP)

    DLP или цифровая обработка света относится к методу печати, в котором используются светочувствительные и светочувствительные полимеры. Хотя это очень похоже на SLA, ключевое отличие заключается в источнике света. DLP использует другие источники света, такие как дуговые лампы. DLP работает относительно быстро по сравнению с другими технологиями 3D-печати.

    Непрерывное производство жидкостного интерфейса (CLIP)

    Один из самых быстрых процессов с использованием фотополимеризации в ванне называется CLIP, сокращение от Продукт непрерывного взаимодействия с жидкостью , разработанный компанией Carbon.

    Цифровой синтез света

    Сердцем процесса CLIP является Технология цифрового синтеза света . В этой технологии свет от специального высокоэффективного светодиодного источника света проецирует последовательность УФ-изображений, открывающих поперечное сечение напечатанной на 3D-принтере детали, что приводит к частичному отверждению УФ-отверждаемой смолы точно контролируемым образом. Кислород проходит через кислородопроницаемое окно, создавая тонкую жидкую границу раздела неотвержденной смолы между окном и печатной частью, известную как мертвая зона. Мертвая зона составляет всего десять микрон. Внутри мертвой зоны кислород препятствует отверждению светом смолы, расположенной ближе всего к окну, что обеспечивает непрерывный поток жидкости под напечатанной деталью. Непосредственно над мертвой зоной направленный вверх УФ-свет вызывает каскадное отверждение детали.

    Простая печать только с помощью аппаратного обеспечения Carbon не позволяет использовать конечные свойства в реальных приложениях. После того, как свет придал форму детали, второй программируемый процесс отверждения обеспечивает желаемые механические свойства путем запекания напечатанной на 3D-принтере детали в термальной ванне или печи. Запрограммированное термическое отверждение задает механические свойства, запуская вторичную химическую реакцию, заставляющую материал упрочняться для достижения желаемых конечных свойств.

    Компоненты, напечатанные с использованием технологии Carbon, не уступают деталям, изготовленным методом литья под давлением. Цифровой синтез света обеспечивает стабильные и предсказуемые механические свойства, создавая действительно изотропные детали.

    Струйное нанесение материала

    В этом процессе материал наносится каплями через сопло небольшого диаметра, подобно тому, как работает обычный струйный бумажный принтер, но он наносится слой за слоем на рабочую платформу, а затем затвердевает под действием УФ-излучения. легкий. Схемы распыления материалов

    . Источник изображения: custompartnet.com

    Распыление связующего

    При распылении связующего используются два материала: основной материал в виде порошка и жидкое связующее. В рабочей камере порошок распределяется равными слоями, а связующее наносится через струйные сопла, которые «склеивают» частицы порошка в нужной форме. После того, как печать закончена, оставшийся порошок счищается, который часто можно использовать повторно для печати следующего объекта. Эта технология была впервые разработана в Массачусетском технологическом институте в 1993.

    Схемы распыления связующего

    Экструзия материала

    Моделирование методом наплавления (FDM)

    Схема FDM (Изображение предоставлено Википедией, сделано пользователем Zureks)

    FDM работает с использованием пластиковой нити, которая разматывается с катушки и поставляется в экструзионное сопло, которое может включать и выключать поток. Сопло нагревается для расплавления материала и может перемещаться как в горизонтальном, так и в вертикальном направлениях с помощью механизма с числовым программным управлением. Объект изготавливается путем экструзии расплавленного материала для формирования слоев, поскольку материал затвердевает сразу после экструзии из сопла.

    FDM был изобретен Скоттом Крампом в конце 80-х. Запатентовав эту технологию, он основал компанию Stratasys в 1988 году. Термин Fused Deposition Modeling и его аббревиатура FDM являются товарными знаками Stratasys Inc. (FFF), был придуман участниками проекта RepRap, чтобы дать словосочетание, использование которого было бы юридически не ограничено.

    Powder Bed Fusion

    Селективное лазерное спекание (SLS)

    SLS использует мощный лазер для сплавления мелких частиц порошка в массу, имеющую желаемую трехмерную форму. Лазер избирательно плавит порошок, сначала сканируя поперечные сечения (или слои) на поверхности порошкового слоя. После сканирования каждого поперечного сечения слой порошка опускается на один слой. Затем сверху наносится новый слой материала и процесс повторяется до тех пор, пока объект не будет готов.

    Схемы SLS (Изображение предоставлено Википедией пользователем Materialgeeza)

    Multi Jet Fusion (MJF)

    Технология Multi Jet Fusion была разработана Hewlett Packard и работает с подметающим рычагом, который наносит слой порошка, а затем другим рычагом, оснащенным струйные принтеры, которые выборочно наносят связующее вещество на материал. Струйные принтеры также наносят средство для детализации вокруг переплета, чтобы обеспечить точные размеры и гладкие поверхности. Наконец, слой подвергается всплеску тепловой энергии, который вызывает реакцию агентов.

    Прямое лазерное спекание металлов (DMLS)

    DMLS в основном аналогичен SLS, но вместо него используется металлический порошок. Весь неиспользованный порошок остается как есть и становится опорной структурой для объекта. Неиспользованный порошок можно использовать повторно для следующего оттиска.

    Из-за увеличения мощности лазера DMLS превратился в процесс лазерной плавки. Узнайте больше об этой и других технологиях обработки металлов на нашей странице обзора технологий обработки металлов.

    Листовое ламинирование

    Листовое ламинирование включает в себя материал в листах, который связывается вместе под действием внешней силы. Листы могут быть металлическими, бумажными или полимерными. Металлические листы свариваются друг с другом с помощью ультразвуковой сварки в несколько слоев, а затем фрезеруются на станке с ЧПУ для придания нужной формы. Можно использовать и бумажные листы, но они склеиваются клеевым составом и обрезаются по форме точными лезвиями.

    Упрощенная схема ультразвуковой обработки листового металла (Изображение предоставлено Википедией пользователем Mmrjf3)

    Направленное осаждение энергии

    Этот процесс в основном используется в металлургической промышленности и в приложениях быстрого производства.

    Всего комментариев: 0

    Оставить комментарий

    Ваш email не будет опубликован.

    Вы можете использовать следующие HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>