Дорогие клиенты! В данной статье мы рассмотрим, как подключить электродвигатель к сети. Электродвигатель — это сложная электрическая машина, и не является обычным бытовым прибором, как на первый взгляд может показаться. Поэтому подключить электродвигатель к сети переменного тока необходимо доверить специалистам-электрикам. В противном случае есть вероятность, что двигатель «сгорит».
Электрик-профессионал определит:
Подходит ли данный двигатель к подключаемому оборудованию?
Какое напряжение электросети и какое напряжение необходимо электродвигателю -220/380В? Бывают двойные значения напряжения (220/380, 380/660), в этих случаях, есть необходимость в правильном подключении к контактам.
Защищён двигатель от внешних воздействии (КЗ, потеря фазы в электросети, перегрузка двигателя электрического)? Подберет необходимую защитную и пусковую аппаратуру.
Схемы вывода обмоток двигателей
В трехфазном двигателе электрическом катушечные группы (обмотки) обычно подводятся к шести клеммам в распределительной коробке двигателя. Клеммы соединяются посредством трех пластин, соединяющих катушечные группы в звезду или треугольник. Катушечные группы имеют условно буквенное обозначение U, V и W, а 2 вывода катушечной группы — начало и конец обозначаются 1 и 2 соответственно.
Фазы обмотки статора после подключения к сети подключаются по одной из схем:
– «Треугольник» (Δ)
– «Звезда» (Y)
Подключение по схеме звезда
Можно легко догадаться, что этот тип подключения схематически похож на звезду с тремя лучами – это когда три конца статорной обмотки обираются в одну точку, и напряжение в 380 вольт подается на начало каждой из обмоток.
Подключение по схеме треугольник
По аналогии с предыдущей схемой, этот тип подключения схематически похож на треугольник – обмотки статора соединяются последовательно – конец одной обмотки соединён с началом следующей. К каждой обмотке подается напряжение 380 вольт.
Подключение двигателя электрического к трёхфазной сети 380 вольт
Наши действия при подключении двигателя:
1. Какое напряжение нам нужно и позволяет ли наша сеть подключить данный двигатель.
2. Информация о возможности подключения по напряжению, как правило, схематически отражено на шильдике: Δ / Y
Двигатель для однофазной сети 220В ↓
Двигатель для трехфазной сети 220/380В ↓
3. Для подключения трёхфазного двигателя необходимо одновременно подать напряжение на три фазы.
При современных возможностях пускозащитной аппаратуры существует два варианта подключения электродвигателя через автоматику:
— с применением АЗД
АЗД — (автомат защиты электродвигателя) уберегает электродвигатель от перегрузок. При перегрузке у двигателя значительно повышаются рабочие токи, АЗД автоматически выключает питание, при превышении определенных значений соответствующего к конкретному электродвигателю. Данное устройство способно отключить электродвигатель в случае короткого замыкания и потере фазы в сети. К АЗД также предлагаются дополнительные контакты – расцепители напряжения. Такой контакт обеспечивает автоматическое включения АЗД при полном восстановлении напряжения в сети.
— с применением автоматического выключателя и теплового реле
Схема подключения на рисунке:
Подключение двигателя электрического к однофазной сети 220 вольт
Для подключения к сети 220 В используются, так называемые, однофазные электродвигатели, которые подключаются именно к бытовой сети с напряжением 220 вольт, достаточно просто вставить вилку в розетку. Максимально допустимая мощность электродвигателя, который разрешено подключать к бытовой однофазной сети в России – 2,2 кВт. Однако на рынок осуществляются поставки электродвигателей с мощностью до 4 кВт из КНР под брендом и гарантией компании РФ, использование таких двигателей допустимо, но нужно быть уверенным, что сеть выдержит. Возможно подключение однофазного двигателя через частотный преобразователь, предназначенный для бытовой сети 220 В. Можно самостоятельно подключить трехфазный электродвигатель в сеть с питанием 220 с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя примерно на 30%. Лучше приобретать однофазный электродвигатель заводской сборки, который выдает именно ту мощность, которая указана на бирке электродвигателя.
Частотный преобразователь в современных условиях
Частотные преобразователи (фото 1) используются для управления частотой вращения электродвигателя, что позволяет не только экономить электроэнергию, но и управлять, например в насосах, подачей и напором перекачиваемой жидкости. При использовании ЧП необходимо учитывать, что регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей. Для работы на низкой частоте, т. е. уменьшение частоты вращения более 30% (увеличивается перегрев обмоток двигателя) требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя (фото 2). А при увеличении частоты вращения более 30% (при таких скоростях есть вероятность выхода из строя подшипников), требуется замена подшипников на усиленные.
фото 1
фото 2
Техобслуживание электродвигателя
Эффективность производственных процессов и бесперебойность работы технологических линий во многом зависят от работы электродвигателя в используемых машинах. Однако они, как и все э…
Как выбрать электродвигатель
Большой ассортимент на рынке промышленных электродвигателей позволяет выбрать оптимальный привод для решения конкретных задач. При выборе электродвигателя следует обратить внимание…
Как правильно выбрать преобразователь частоты?
Преобразователь частоты (или частотник, или ПЧ) — это электротехническая система, которая позволяет плавно регулировать скорость вращения асинхронных электродвигателей. Со времен…
Зачем нужен преобразователь частоты для двигателя
При всей своей простоте и множестве преимуществ электромотор также имеет определенные ограничения — у этого агрегата всего два рабочих состояния — когда он обесточен, он не работае…
Электродвигатели SIEMENS
Электродвигатели SIEMENS отличаются надежностью и качеством. Огромный ассортимент привлекает внимание. Существуют синхронные, асинхронные варианты изделий. Электродвигатели прои…
Электродвигатель со встроенным тормозом
По сути, двигатели с тормозом – это стандартные общепромышленные асинхронные электродвигатели, на которые монтируют встроенный электромагнитный тормоз. В связи с этим, от общепромы…
Электрооборудование как источник пожара на производстве
Тепловыделение в электрических устройствах и установках связано с их спецификой или происходит как побочный продукт протекания электрического тока и связанных с этих потерь энергии. ..
Подключения трехфазного двигателя к однофазной сети
Бывают ситуации, когда мы вынуждены использовать двигатель, который не адаптирован к данному источнику питания. Примером этого является подключение трехфазного двигателя к однофазн…
Общепромышленные электродвигатели
Общепромышленные электродвигатели являются одним из наиболее важных элементов в промышленном производстве. Они используются для привода различных механизмов и оборудования, таких к…
5 шагов подключения неизвестного электродвигателя
Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.
Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.
1. Оцениваем номинальную мощность и ток двигателя
Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.
На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.
2. Определяем напряжение по схеме включения
Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.
Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».
Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.
Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».
Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.
Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».
3. Подаем питание на двигатель
После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.
Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.
Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).
На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.
4. Определяем необходимой ток защиты
Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.
Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.
В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.
5. Контролируем нагрев обмоток
При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.
Заключение
Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.
Другие полезные материалы: Трехфазный двигатель в однофазной сети Эксплуатация электрооборудования вне помещений Как прозвонить электродвигатель мультиметром Как рассчитать потребляемую мощность двигателя
Соединения выводов двигателя — базовое управление двигателем
Схемы
В трехфазных двигателях используются витки проволоки для создания магнитных полей и вращения.
Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя определяется при его изготовлении. Существует два класса трехфазных двигателей: звезда и треугольник.
Конфигурация «звезда» и «треугольник»
Трехфазные двигатели также рассчитаны на работу при двух разных напряжениях, поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.
В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более высокое значение напряжения питания распределяется поровну между ними, и через каждую обмотку проходит номинальный ток.
В низковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более низкое значение напряжения питания распределяется поровну между катушками, и через каждую обмотку проходит номинальный ток.
Обратите внимание, что низковольтное соединение обязательно должно потреблять от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Важно определить размеры и их размеры на основе ожидаемого значения тока, который должен потреблять двигатель при напряжении, при котором он используется.
Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать проводов. В конфигурациях «звезда» и «треугольник» три из этих проводов подключены внутри, поэтому из двигателя для подключения выводятся только девять проводов. Эти отведения пронумерованы от 1 до 9, и как в звезде, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, рисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге. .
В зависимости от внутренней конструкции двигателя эти провода могут быть подключены одним из четырех способов: Высоко- или низковольтная звезда, или высоко- или низковольтная треугольник
Иногда возникает необходимость протестировать или подтвердить конфигурацию двигателя перед окончательным подключением. Если двигатель с обмоткой звездой подключен как двигатель с обмоткой треугольником или наоборот, двигатель не будет работать должным образом.
Рассмотрим следующую ситуацию: у вас есть девять выводов, идущих от двигателя, но нет указаний на то, что он смотан звездой или треугольником. Используя для простой проверки непрерывности, вы можете определить тип конструкции двигателя.
При соединении по схеме «звезда» каждый из проводов 1, 2 и 3 должен иметь непрерывность только с одним другим проводом (4, 5 и 6 соответственно). Три провода без непрерывности к проводам 1, 2 и 3 должны иметь непрерывность друг с другом.
Соединения двигателя звездой
Если это треугольник, каждый из проводов 1, 2 и 3 должен иметь непрерывность с двумя другими проводами:
T1 имеет непрерывность с T4 и T9
T2 имеет преемственность с T5 и T7
T3 имеет непрерывность с T6 и T8
Соединения двигателя треугольником
Важно отметить, что эти точки представляют собой внутреннее соединение катушек двигателя, а не то, как они должны быть подключены к напряжению.
Низковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, соединенным параллельно друг с другом. Клеммы 4, 5 и 6 соединены вместе для получения второго нейтрального соединения.
Низковольтное соединение звездой
L1
Л2
Л3
Свяжите вместе
1,7
2,8
3,9
4,5,6
Высоковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, соединенным последовательно друг с другом.
Высоковольтное соединение двигателя звездой.
L1
Л2
Л3
Свяжите вместе
1
2
3
4,7 – 5,8 – 6,9
Низковольтный треугольник
В этой конфигурации каждая фаза подводится к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.
Низковольтное соединение двигателя Delta
L1
Л2
Л3
Свяжите вместе
1,6,7
2,4,8
3,5,9
нет
Треугольник высокого напряжения
В этой конфигурации каждая фаза подведена к двум катушкам, которые соединены последовательно с катушками других фаз.
Высоковольтное соединение двигателя Delta
L1
Л2
Л3
Свяжите вместе
1
2,
3
4,7 – 5,8 – 6,9
Схемы подключения двигателя
Маркировка проводов и соединения электродвигателя
Чтобы узнать о конкретных соединениях двигателей Leeson, перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные о соединении, размеры, данные с паспортной таблички и т.
Подключение эл двигателя: ✔ Как подключить электродвигатель, схема подключения
Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Схема подключения электродвигателя во многом определяется условиями его эксплуатации.
Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».
Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).
На рисунке 1 представлены две схемы соединения обмоток двигателя.
Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).
Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.
Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.
В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.
Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.
Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.
Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.
В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.
Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.
Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.
Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.
Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.
Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.
Наиболее простая схема приведена на рисунке 3.
В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.
Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.
Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.
По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».
Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.
При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.
После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.
Катушки пускателей должны быть рассчитана на напряжение 220В.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
5 шагов подключения неизвестного электродвигателя
Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.
Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.
1. Оцениваем номинальную мощность и ток двигателя
Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.
На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.
2. Определяем напряжение по схеме включения
Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.
Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».
Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.
Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».
Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.
Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».
3. Подаем питание на двигатель
После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.
Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.
Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).
На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.
4. Определяем необходимой ток защиты
Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.
Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.
В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.
5. Контролируем нагрев обмоток
При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.
Заключение
Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.
Другие полезные материалы: Трехфазный двигатель в однофазной сети Эксплуатация электрооборудования вне помещений Как прозвонить электродвигатель мультиметром Как рассчитать потребляемую мощность двигателя
Схемы подключения двигателя
Маркировка и соединения проводов электродвигателя
Чтобы узнать о конкретных соединениях двигателей Leeson, перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные о соединении, размеры, данные с паспортной таблички и т. д. www.leeson.com
Двойное напряжение: (основная и вспомогательная обмотки)
Напряжение
Вращение
L1
L2
Присоединиться
Высокий
против часовой стрелки
1,8
4,5
2&3,6&7
CW
1,5
4,8
2&3,6&7
Низкий
против часовой стрелки
1,3,6,8
2,4,5,7
———
CW
1,3,5,7
2,4,6,8
———
Маркировка однофазных клемм, определяемая по цвету: (стандарты NEMA) 1 Синий 5 Черный P1 – цвет не назначен 0012 3-оранжевый 7-цвет не назначен 4-желтый 8-красный
9Выводы Номенклатура NEMA Подключение звездой (только низкое напряжение)
Т1
Т2
Т3
Т7
Т8
Т9
Вместе
Провода двигателя
1
2
3
7
8
9
4&5&6
12 выводов NEMA & IEC Номенклатура 0004
Т1
Т2
Т3
Т7
Т8
Т9
NEMA
1,6
2,4
3,5
7,12
8,10
9,11
МЭК
1
2
3
7
8
9
Трехфазные односкоростные двигатели
Номенклатура Nema — 6 Отведения:
Одно напряжение – внешнее соединение звездой
L1
L2
Л3
Присоединиться
1
2
3
4, 5 и 6
Одно напряжение – внешнее соединение треугольником
L1
L2
Л3
1,6
2,4
3,5
Соединения «звезда-треугольник» с одним напряжением
Режим работы
Соединение
L1
L2
Л3
Присоединиться
Старт
Звезда
1
2
3
4&5&6
Выполнить
Дельта
1,6
2,4
3,5
——-
Соединения «звезда-треугольник» с двойным напряжением
Напряжение
Соединение
L1
L2
Л3
Присоединиться
Высокий
Звезда
1
2
3
4, 5 и 6
Низкий
Дельта
1,6
2,4
3,5
——-
Номенклатура NEMA — 9 проводов: Двойное напряжение, соединение звездой
Напряжение
L1
L2
Л3
Присоединиться
Высокий
1
2
3
4 и 7, 5 и 8, 6 и 9
Низкий
1,7
2,8
3,9
4&5&6
Двойное напряжение, соединение треугольником
Напряжение
L1
L2
L3
Присоединиться
Высокий
1
2
3
4 и 7, 5 и 8, 6 и 9
Низкий
1,6,7
2,4,8
3,5,9
————
Номенклатура NEMA — 12 проводов: Двойное напряжение — внешнее соединение звездой
Напряжение
L1
L2
L3
Присоединиться
Высокий
1
2
3
4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкий
1,7
2,8
3,9
4&5&6, 10&11&12
Двойное напряжение WYE-подключенное начало Delta Connected Run
Напряжение
Соединение
L1
L2
L3
Присоединиться
Высокий
ЗВЕЗДА
1
2
3
4 и 7, 5 и 8, 6 и 9, 10, 11 и 12
Дельта
1,12
2,10
3,11
4 и 7, 5 и 8, 6 и 9
Низкий
ЗВЕЗДА
1,7
2,8
3,9
4&5&6, 10&11&12
Дельта
1,6,7,12
2,4,8,10
3,5,9,11
————
IEC Номенклатура-6 и 12 отведений: Одно напряжение соединения Wye-Delta Одно напряжение соединения Wye-Delta
режим работы
Соединение
L1
L2
Л3
Присоединиться
Старт
ЗВЕЗДА
У1
V1
W1
U2&V2&W2
Выполнить
Дельта
У1,Ш2
В1,У2
Ш1,В2
—————
Соединения «звезда-треугольник» с двойным напряжением
Вольт
Соединение
L1
L2
Л3
Присоединиться
Высокий
ЗВЕЗДА
У 1
V1
W1
U2&V2&W2
Низкий
Дельта
У1,Ш2
В1,У2
Ш1,В2
—————
Двойное напряжение, подключение по схеме «звезда», запуск Работа с подключением по треугольнику
Вольт
Соединение
L1
L2
Л3
Присоединиться
Высокий
ЗВЕЗДА
У 1
V1
W1
U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта
У1,Ш6
В1,У6
Ш1,В6
U2 и U5, V2 и V5, W2 и W5
НИЗКИЙ
ЗВЕЗДА
У1,У5
В1,В5
Ш1,Ш5
U2&V2&W2, U6&V6&W6
Дельта
У1,У5, В2,В6
В1,В5 У2,У6
W1, W5 V2, V6
———————————————
Номенклатура NEMA — 6 выводов: Соединение с постоянным крутящим моментом (Низкоскоростной HP составляет половину высокоскоростного HP)
Скорость
L1
L2
Л3
Типовой Соединение
Высокий
6
4
5
1&2&3Соединение
2 ЗВЕЗДА
Низкий
1
2
3
4-5-6 Открыто
1 Дельта
Соединение с переменным крутящим моментом (Низкоскоростная мощность составляет 1/4 от высокой скорости)
Скорость
L1
L2
Л3
Типовой Соединение
Высокий
6
4
5
1&2&3Соединение
2 звезды
Низкий
1
2
3
4-5-6 Открыто
1 ЗВЕЗДА
Соединение с постоянной мощностью (л. с. одинаково на обеих скоростях)
Скорость
L1
Л2
Л3
Типовой Соединение
Высокий
6
4
5
1-2-3 Открыт
1 Дельта
Низкий
1
2
3
4&5&6-соединение
2 звезды
НОМЕНКЛАТУРА IEC-6 ВЫДЫ: Постоянное соединение крутящего момента
Скорость
L1
Л2
Л3
Типовой Соединение
Высокий
2 Вт
2U
2В
1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ
2 звезды
Низкий
1U
1В
1 Вт
2U-2V-2W ОТКРЫТЫЙ
1 Дельта
Соединение с переменным крутящим моментом
Скорость
L1
L2
Л3
Типичный Соединение
Высокий
2 Вт
2U
2В
1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ
2 звезды
Низкий
1U
1В
1 Вт
2U-2V-2W ОТКРЫТЫЙ
1 ЗВЕЗДА
Соединения выводов двигателя — базовое управление двигателем
Схемы
Трехфазные двигатели используют витки проволоки для создания магнитных полей и вращения.
Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя определяется при его изготовлении. Существует два класса трехфазных двигателей: звезда и треугольник.
Конфигурация «звезда» и «треугольник»
Трехфазные двигатели также сконструированы для работы при двух разных напряжениях, поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.
В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более высокое значение напряжения питания распределяется поровну между ними, и через каждую обмотку проходит номинальный ток.
В низковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более низкое значение напряжения питания распределяется поровну между катушками, и через каждую обмотку проходит номинальный ток.
Обратите внимание, что низковольтное соединение обязательно должно потреблять в два раза больше тока от источника, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Важно определить размеры и их размеры на основе ожидаемого значения тока, который должен потреблять двигатель при напряжении, при котором он используется.
Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать проводов. Как в конфигурации «звезда», так и в конфигурации «треугольник» три из этих проводов соединены внутри, поэтому из двигателя для подключения выводятся только девять проводов. Эти отведения пронумерованы от 1 до 9., а в схеме «звезда» и «треугольник» используется стандартное соглашение о нумерации: начиная с верхней части схемы с номера провода 1, рисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге.
В зависимости от внутренней конструкции двигателя эти провода могут быть подключены одним из четырех способов: Высоко- или низковольтная звезда, или высоко- или низковольтная треугольник
Иногда возникает необходимость протестировать или подтвердить конфигурацию двигателя перед окончательным подключением. Если двигатель с обмоткой звездой подключен как двигатель с обмоткой треугольником или наоборот, двигатель не будет работать должным образом.
Рассмотрим следующую ситуацию: у вас есть девять выводов, идущих от двигателя, но нет указаний на его обмотку звездой или треугольником. Используя для простой проверки непрерывности, вы можете определить тип конструкции двигателя.
Если это соединение звездой, каждый из проводов 1, 2 и 3 должен иметь непрерывность только с одним другим проводом (4, 5 и 6 соответственно). Три провода без непрерывности к проводам 1, 2 и 3 должны иметь непрерывность друг с другом.
Соединения двигателя звездой
Если это треугольник, каждый из проводов 1, 2 и 3 должен иметь непрерывность с двумя другими проводами:
T1 имеет преемственность с T4 и T9
T2 имеет преемственность с T5 и T7
T3 имеет преемственность с T6 и T8
Соединения двигателя треугольником
Важно отметить, что эти точки представляют собой внутреннее соединение катушек двигателя, а не то, как они должны быть подключены к напряжению.
Низковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, которые соединены параллельно друг с другом. Клеммы 4, 5 и 6 соединены вместе для получения второго нейтрального соединения.
Низковольтное соединение звездой
L1
Л2
Л3
Свяжите вместе
1,7
2,8
3,9
4,5,6
Высоковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, соединенным последовательно друг с другом.
Высоковольтное соединение двигателя звездой.
L1
Л2
Л3
Свяжите вместе
1
2
3
4,7 – 5,8 – 6,9
Низковольтный треугольник
В этой конфигурации каждая фаза подводится к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.
Всего комментариев: 0