Все виды 3д принтеров: Виды 3D принтеров. Устройство 3D принтера.
Содержание
классификация по материалам и технологиям, разновидности 3d печати
- Появление 3D-принтеров открыло совершенно новый период в мире современных технологий, поскольку стало реально напечатать самостоятельно практически любой объёмный предмет. Основа работы таких устройств обычно сводится к созданию цифровой модели, которая потом воплощается в настоящую копию. Но подобные приборы бывают совершенно разной мощности и комплектации, а также функционируют на базе всевозможных материалов. Поэтому владельцам принтеров стоит разбираться в этих отличиях, чтобы знать, какой вариант и когда именно будет уместно использовать.
- Классификация принтеров по типу используемых материалов
- Разновидности 3d печати
Классификация принтеров по типу используемых материалов
Именно расходник, который заправляется в 3D-принтер, определяет конкретный тип устройства. Сейчас создано несколько десятков вариаций, которые отличаются по своей плотности, технике и сфере применения. Зная свойства каждого из них, получится подобрать максимально качественную базу для будущего изделия.
Глина/керамика
Частично копируя свойствами керамики, рассматриваемая 3D-нить для печати включает в себя специальную смесь глины и полимера. Единой характеристикой для них является хрупкость, поэтому для безошибочной обработки и печати стоит соблюдать осторожность. Загруженный материал постепенно нагревается в печи после печати, а керамические частицы филамента спекаются, создавая слегка усохший, но твёрдый образец, готовый к остеклению и последующей обработке керамики.
Справка! Одним из лучших примеров глины для печати является LAYCeramic от Lay Filament, которая гарантирует почти аутентичные результаты.
Керамическую нить советуют применять, когда необходимо воссоздать глиняную посуду ручной работы и точно повторить столь уникальную фактуру из искусственной замены.
Гипс
Главное преимущества гипса заключается в простоте, эффективности и универсальности в 3D-печати для повтора различных объектов. В таком случае 3D-принтер для гипса также заправляется соответствующими порошками, начиная от обыкновенного гипса и заканчивая более сложными аналогами в виде шпаклевки, цемента и тому подобных версий. Данный материал равномерно распределяется по поверхности рабочего стола, поверх идёт профессиональное клеящее средство, после чего повторно наносится тонкий слой гипсового порошка.
Внимание! Напечатанные изделия могут иметь любой оттенок, ведь цветовой спектр в отдельных моделях принтеров достигает почти 6 млн палитр.
За счёт наличия связующего вещества такие принтеры нередко применяются для создания интерьерных украшений – гипс прекрасно подходит для изготовления формы, которую потом можно декорировать уже вручную.
Воск
Вещество, которое следует применять для восковой 3D-печати, с натуральным воском не имеет ничего общего, кроме наименования, заниженной зольности и похожих температур плавления. Этот материал нужен для изготовления выплавляемых моделей – формочек для литья металлов. Впоследствии воск из заготовок выплавляется и вместо него заливается уже расплавленный металл.
Подобным способом создаются украшения высокого качества и копии металлических деталей для техники. Здесь задействовано параллельно несколько технологий — струйная печать или FDM. Вдобавок тут имеется отдельный бонус – лёгкость исполнения, поэтому чёткость и точность повторяемых контуров оценивается безукоризненно.
Пластик
Здесь для создания очередных объектов придётся задействовать жидкие фотополимеры, которые имеют интересный принцип создания фигурок. Ссылаясь на загруженную заранее компьютерную модель, ультрафиолетовый лазер постепенно засвечивает выделенные по схеме зоны. Чуть позже они начнут плавно затвердевать. Поскольку воздействие осуществляется через специально подготовленный фотошаблон, применяется ультрафиолетовая лампа. А шаблон будет меняться с каждым следующим слоем.
Единственный недостаток – низкая скорость работы, хотя подобная технология 3D-печати нужна для элементов деталей из металла. Именно она сделала принтеры такими популярными, что повлияло на спрос и востребованность таких устройств в будущем.
Дерево
Когда необходима печать объектов, которые выглядят максимально похожими на дерево и имеют аналогичные характеристики, то стоит приобрести PLA-wood с добавлением древесного волокна. На рынке существует множество филаментов для 3D-принтера, созданных по формуле самых распространенных пород. Одним из креативных применений является создание моделей, используемых в архитектуре. Но эстетическая и тактильная привлекательность такого материала достигается благодаря снижению гибкости и прочности.
Важно! Стоит быть осторожным с температурой, при которой вы печатаете филаментом с древесиной: чрезмерное количество тепла непременно приведёт к сгоревшему или карамельному виду.
Металл (сталь/алюминий/золото)
Настоящие металлы здесь тоже не применяются: по факту это лишь смесь специального порошка и PLA/ABS. Хотя такая основа всё равно позволяет создавать прототипы, которые имеют внешний вид металла. Для аддитивных установок готовый материал выпускается в форме мелкодисперсных сферических гранул с размером зерна 4–80 микрон, а сама технология сосредоточена на сплаве при помощи иттербиевого лазера.
Справка! Сейчас существует около 20 материалов из металла, число которых постоянно увеличивается за счёт не просто стандартных смесей, но и уникальных высокотехнологичных веществ.
Подобным методом изготавливаются функциональные детали и технические прототипы, штампы, прессовые вставки и всякие элементы пресс-форм для литья. Но из-за них придётся чаще менять сопла: применяемые компоненты немного абразивны, что значительно повышает степень износа.
Поликарбонат
К числу самых новейших материалов относят PC или обыкновенный поликарбонат. Согласно многочисленным отзывам это чрезвычайно прочный, легкий и прозрачный термопластик. Он прекрасно подходит для производства различных бытовых продуктов (компакт-диски, пуленепробиваемые стекла, снаряжение, стекла для солнцезащитных очков, подводные маски, чехлы для телефонов) – материал нашёл своё применение в самых разных отраслях.
Завышенная ударная вязкость здесь гораздо надёжнее, чем у стекла или акрила. А вот плотность меньше половины плотности стекла: это свидетельствует о хорошей прочности к ударам и аналогичной прозрачности.
Песок
Значение «песок» в 3D-печати объединяет группу специальных порошкообразных материалов, куда включены такие виды, как: кварцевый, керамический, хромированный и циркониевый песок, оксид. Обычно упомянутые варианты используются при литейном производстве в машиностроении и промышленности. Впрочем, известны случаи их применения в смежных сферах – архитектуре или дизайне.
Принцип действия техники с песком очень прост: печатающая головка принтера начинает наносить специальное связующее вещество, поверх него порошок и так повторяет однообразное действие многократно. Дополнительно стоит отметить, что устройства, которые ориентированы на песок, без проблем взаимодействуют и с пудрой из металла.
Полиамид
Полиамид – уникальный порошковый материал, спекаемый лазером. Полный список полиамидов широк и включает в себя простые пластики и параллельно специальные вещества. Столь востребованный пластик шероховат, поэтому при его использовании на конечном изделии могут быть заметны гранулы или горизонтально ориентированные полосы (следы от слоёв печати).
Внимание! Данный изъян поверхности можно исправить при завершающей постобработке за счёт мини-дрелей и профессиональных шлифовальных насадок.
Обычно он применяется для изготовления уже конечных изделий, тестирования и мелкосерийного производства, гарантируя стабильную производительность и многочисленные копии.
Резина
Специальный материал, который по своим свойствам очень близок к настоящей резине и практически на 100 % повторяет её главные свойства. Этот материал хорошо подойдет для печати таких гибких вещей, как кнопки, уплотнители, амортизаторы и даже покрышки для радиоуправляемых моделей. Техника тоже не отличается сложностью: поверхности склеиваются при помощи синтетических каучуков или паяльного фена. Обычно в наборе к 3D-принтеру идёт катушка, упакованная в многоразовый вакуумный пакет с силикагелем, чтобы при хранении вещество не портилось.
Силикон
Долго данный материал не использовался в 3D-печати, поскольку плохо поддавался нагреву, что изначально делало его непригодным для рассматриваемой технологии производства. Но сейчас многочисленные области применения силикона вытекают из разнообразных свойств материала: устойчивость к воздействию агрессивных сред, отсутствие токсического действия, эластичность и прозрачность.
Чаще всего из него повторяют модели игрушек, масок, мягких тапочек, элементов суставов, кнопок и даже пневматических патрубков сложной формы. База из силикона не поддается механической обработке и поэтому обладает высокой износостойкостью.
Разновидности 3d печати
Современных технологий 3D-печати на теперешний момент создано немало: регулярно появляются свежие версии, а также происходит непрерывная модификация уже известных схем и формул. Поэтому владельцу 3D-принтера необходимо оставаться в курсе новинок, чтобы ориентироваться во всём многообразии моделей и учитывать их технологические характеристики.
SLA – стереолитография
SLA — основан на облучении жидкой фотополимерной смолы лазером для повтора твёрдых физических моделей. Воссоздание запланированной модели проводится поэтапно, слой за слоем: каждый вычерчивается лазером, согласно заложенным в систему данным. Подобное облучение приводит к полимеризации (затвердеванию) материала в точках соприкосновения с лучом. Многие не рекомендуют держать такое устройство дома из-за токсичности фотополимера.
DLP
DLP — альтернативный способ цифровой светодиодной проекции позволяет снизить себестоимость 3D техники. По сравнению с лазерными установками, DLP принтеры создают проекцию изображение целого слоя до затвердевания полимерной смолы, а потом наносится новый слой материала и следует рисунок нового слоя будущей модели. С момента появления такие приборы составляют серьёзную конкуренцию аппаратам, работающим по смежной технологии SLA.
FDM/FFF/PJP
Представленная группа FDM принтеров действует по единому принципу: они выдавливают какой-то определённый материал слой за слоем через сопло-дозатор. Пока это самая популярная технология в рассматриваемых устройствах, куда входят мэйкерботоподобные аналоги. Печать на основе подобной техники отличается высоким качеством, скоростью и прочностью финальных изделий. Вдобавок она совместима с большинством ранее упомянутых материалов.
SLM
SLM — принцип работы данной технологии заключается в лазерном сплавлении металлического порошка. Для этого камера принтера наполняется необходимым материалом при помощи специального подающего механизма. Потом база распределяется по платформе очень тонкими слоями посредством ровняющей лопатки. Далее мощный лазер соединяет двухмерные кусочки будущего изделия путем выборочного сплавления. На финальных этапах платформа опускается, и весь процесс повторяется заново до полного построения выбранной вещи.
Справка! Стоит помнить, что ёмкость при печати по SLM заполняется специальным инертным газом, что не дает металлу вступать в реакцию. В качестве материала часто используются сталь, кобальт-хромовые и другие смеси, титан, а также драгоценные металлы.
LCD
Этот формат печати очень похож на ранее упомянутый принцип DLP, хотя сам алгоритм обладает существенным преимуществом — низкой стоимостью принтеров. Обычно к принтерам схожей конструкции относятся устройства, работающие с засветкой фотополимера светодиодной УФ-матрицей с использованием в качестве маски доработанного LCD-дисплея. Они имеют хорошую совместимость с прочими технологиями, но перед применением полимеров для других типов требуется предварительная проверка по каждой подборке.
SLS
Смысл SLS (лазерного спекания порошковых компонентов) заключается в степени нагрева материала печати и используемых материалов. В подобных конструкциях всегда есть небольшая ванна с жидким полимером, где луч лазера проходит по поверхности, после чего в обработанных зонах полимер под воздействием УФ полимеризуется. Едва один слой будет готов, платформа с деталью опускается, жидкий полимер переходит в пустоту и запекается следующий слой. Так происходит по кругу, пока не будет закончено всё изделие целиком.
Внимание! После печати таким способом необходима постобработка объекта — удаление лишнего материала и поддержки, иногда поверхность шлифуют.
LPD
Протокол, также известный под названием «протокол построчной печати», — сетевая версия прикладного уровня для передачи объёмных предметов на печать, является стандартом де-факто для UNIX-систем, предоставляющим базовые возможности. Тут файл данных, предназначенный для печати на принтере, сначала помещается во временную область (каталог на диске), где периодически сканируется зона спулинга. По факту столь специфическая область представляет собой последовательный набор очередей заданий на реализацию копий, которые выполняются в стандартной очереди.
Polyjet
Очередной метод печати был изобретён израильской компанией Objet в 2000 г. Его суть сводится к тому, что фотополимер маленькими дозами выстреливается из тонких сопел (наподобие струйной печати), после чего моментально полимеризуется на поверхности изготавливаемой вещи под воздействием УФ-излучения. Основными материалами здесь являются фотополимеры и пластик, хотя порой подходит и специальный воск. Как правило, столь объёмную печать используют при изготовлении медицинских имплантатов, зубных протезов и слепков. Заодно тут допускается получение многоцветных вариантов и вещей с различными свойствами (эластичные в сочетании с твёрдыми).
3 DP
Процесс создания дубликатов по этой inc-jet-технологии базируется на связывании материала в предварительно заданных зонах уникальным клеящим веществом. Перед стартом печати будущая 3D-модель требуемого объекта должна быть разрезана специальной САПР-программой на горизонтальные слои, после чего сама форма уже передаётся на печать в специальном G-коде. Выбранный метод заключается в нанесении на материал клея, за ним слоя свежего порошка и далее всё заново. В итоге получается похожий на гипс материал (sandstone) – данный способ абсолютно безопасен для бытового и офисного использования.
Справка! Конечный результат может иметь грубую поверхность и невысокое разрешение – это главный изъян 3 DP.
DMLS
Прямое спекание металлов лазером – уникальный приём аддитивного производства металлических изделий, созданный фирмой EOS. Технологию DMLS нередко путают со смежными принципами SLS и SLM. Процесс неизменно включает в себя порошковый материал: он идёт в рабочую камеру в чётком количестве, необходимом для нанесения одного слоя. Потом специальный валик выравнивает вещество в ровный слой и удаляет лишнее из камеры, а лазерный луч спекает частицы друг с другом и с предыдущим уровнем согласно контурам, заданным цифровой моделью.
Важно! Центральной особенностью технологии считается очень высокое разрешение печати – в среднем около 20 микрон.
CJP
Очередная цветная струйная печать – тоже разновидность трёхмерного способа, которая подразумевает тонкое нанесение порошкообразных расходных материалов с выборочным использованием связующего полимера. Важным отличием этой новинки являются разноцветные элементы в моделях. В свою очередь, неизрасходованные материалы не убираются из рабочей зоны во время процесса, а служат дополнительной опорой для следующих уровней, что позволяет реализовать предметы высокой геометрической сложности.
EBM
Техника, которая называется электронно-лучевая плавка – ещё один метод аддитивного производства металлических изделий быстрого производства. В основе утверждённой схемы лежит использование электронных пучков высокой мощности для сплавки материала в вакуумной камере с появлением последовательных слоев, дублирующих контуры объёмной модели. Подобное плавление совершается при высоких фоновых температурах, достигающих порядка 700–1000 °C, что даёт возможность создавать детали без остаточного механического напряжения, который бывает вызван градиентом температур между уже охлажденными и ещё горячими участками.
Clip
Инновационная схема и принцип её действия заключается в использовании света и кислорода для отверждения светочувствительной смолы. Согласно описанию, такой подход схож с типичной и широко известной стереолитографией, где для отверждения светочувствительной смолы применяется лазер или прожектор. Здесь механическая 3D-печать внезапно превращается в фотохимический процесс, позволяющий использовать тонкую настройку и гарантирующий быстрое изготовление объектов и отсутствие эффекта расслоения. Кислород активно применяется как подавляющий агент, предотвращающий отвердевание смолы в отдельных зонах.
DLS
Наиболее распространенный алгоритм печати, который заключается в том, что под воздействием ультрафиолетового света корректируются физические свойства смол. Каждый слой засвечивается, после чего последующий уровень становится твёрдым. По факту это альтернативный метод SLA, который необходим вместо лазерных установок. Такие варианты проецируют изображение полноценного слоя, после наносится другой слой строительного вещества, и так постепенно формируется будущий прототип. 3D-приборы, работающие по технологии DLS, демонстрируют высокие результаты.
MJ
Многоструйное моделирование – фирменный способ печати на базе аддитивного производства, разработанный организацией 3D-Systems. Данная технология применяется в серии профессиональных устройств ProJet. Так, воспроизведение слоёв осуществляется с помощью специальной печатной головки, дополненной массивом сопел: их численность в современных моделях варьируется от 96 до 448 штук. В случае с фотополимерами каждый законченный слой обрабатывается ультрафиолетовым излучателем для дальнейшей полимеризации.
LOM
Если рассматривать этот вариант планировки объёмных фигур, то в нем используются ламинированные пласты, которые вырезаются с помощью ножа или лазера и склеиваются. Сначала фиксируется тонкий лист материала, который отрезается чётко по контуру, потом укладывается следующий лист и так снова. На финальной стадии все листы прессуются или спекаются. А когда для печати объёмных моделей необходима тонкая фольга, то она спекается благодаря встроенной ультразвуковой вибрации и прессуется в требуемый формат.
LDM
Очередную технологию разработал производитель принтеров WASP, ориентируясь для начала на глину. Методика жидкого нанесения выбранного вещества решает многие технические проблемы, связанные с созданием 3D-материалов. Подобный алгоритм позволяет чётко контролировать поток глиняного материала, подающегося на экструдер: от начала до конца процесс синхронизирован с шаговым двигателем, который обещает последовательную подачу базы. Такой подход предотвращает образование воздушных пузырей, деформаций и прочих изъянов, которые в итоге рискуют вызвать разрушение керамических изделий.
MJM
MJM имеет немало общего с FDM-технологией и тоже именуется многоструйной. Трехмерная печать осуществляется за счёт равномерного выдавливания расходного материала через многочисленные сопла, расположенные в печатающей головке. Эти элементы зафиксированы линией в несколько рядов, численность и расположение которых зависит от конкретной модели. В процессе печати головка неспешно передвигается в горизонтальной плоскости вдоль предметного стола, а из каждого миниатюрного сопла разбрызгивается жидкий полимер. Сразу после пройденного блока под влиянием УФ-излучения материал оперативно застывает и приобретает прочность.
Binder jetting
Аналог струйной печати посредством нанесения порошка и склеивания его связующим веществом BJ разработан специально для производства литейных форм. Цифровая модель заданной формы делится поэтапно на слои, переносится в аддитивную установку, где на предварительно подготовленный уровень песчаной смеси наносится отвердитель. Так в зоне построения создается отвержденная часть профессиональной смеси, точно повторяющей 3D-объект. Таким способом получится качественно печатать масштабные детали, что более рентабельно, чем иные методы производства.
DMT
Данная технология считается одним из самых эффективных видов 3D-печати металлических изделий за счёт прямого послойного построения в процессе сплавления мелкодисперсных частиц порошка лазером непосредственно по CAD-модели. В процессе DMT материал в требуемом количестве подается точечно в область плавления, образованную поверх заготовки при воздействии лазерного излучения. Благодаря такой организации подачи порошка возникает целый перечень уникальных преимуществ.
SDL
Селективное прессование запатентовано компанией Mcor Technologies: подобная печать начинается с подготовки в специальном программном обеспечении. Модели заранее компонуются и размещаются в виртуальной рабочей камере принтера, делятся на слои, устанавливается глубина пропитки и в конце формируется задание на печать. Все операции выполняются в уникальном программном обеспечении, которое идёт в комплекте с самим устройством.
MIM
Литьевое прессование металлов – высокотехнологичный процесс формования сложных изделий, изготавливаемых из мелкодисперсных смесей полимерного связующего с металлическими наполнителями. Этот способ производства деталей сложного профиля без отходов материала и последующей механической обработки считается сегодня самым малозатратным при серийном производстве. Причём металлический порошок получают путём распыления металла с размером частиц от 5 до 20 микрон.
Специальные приборы для 3D-печати привлекают большое количество людей, но далеко не все действительно разбираются во встроенном функционале таких устройств. Поэтому правильная расстановка приоритетов в сочетании со знанием существующих технологий и различных материалов для печати позволят использовать столь уникальную технику по максимуму.
- 14 февраля 2020
- 10095
Получите консультацию специалиста
Технологии и методы 3D-печати – АНРО технолоджи
Активное внедрение 3Д-технологий содействовало созданию прогрессивных 3D-принтеров с богатым набором опций. Высокоэффективные технологии 3D-печати позволили спроектировать оригинальные образцы рекламной продукции для маркетинговых компаний, объектов общепита, промышленности и ландшафтного дизайна.
3Д-печать представляет собой процедуру проектирования трехмерных композиций заданной геометрической формы. Процесс получения оригинальной модели базируется на основе поэтапного построения объекта четкими наносимыми слоями, отчетливо демонстрирующими грани изделия.
Инновационные способы 3D-печати очень востребованы в строительной сфере, архитектуре, образовании, медицине, биоинженерии и многих других областях. В отличие от традиционных способов получения деталей — фрезеровки, точения, они позволяют добиться высокой точности, наибольшей экономии материалов и времени.
Особенности 3D-печати
Проектируемые модели воспроизводятся при помощи специальных компьютерно-графических программ, которые предназначены именно для этой цели. Построение одной модели может занимать от пары часов до двух и более дней в зависимости от особенности проекта. Настольное устройство позволяет проектировщикам и специалистам в сфере дизайнерского искусства претворять в реальность оригинальные прототипы.
Преимуществом современных технологий является оперативность и экономичность моделирования объектов, например, при изготовлении изделий на производстве. 3D-принтеры незаменимы для создания уникальных изделий в ДОУ, построения более сложных образцов в школах и специализированных учреждениях. Современные технологии позволяют значительно упростить работу с 3D-моделиями, так что эта технология становится доступна для детей. 3Д-моделирование позволяет создавать объекты уникальных геометрических форм различной степени сложности.
Основные виды 3D-печати
- Прототипирование методом наплавления (FDM). Доступный метод моделирования, который заключается в послойном наложении горячей нити из плавкого рабочего продукта (воска, металла, пластика). Чаще всего используется для быстрого прототипирования различных моделей, например, серийного производства украшений, сувениров и игрушек;
- Селективное лазерное спекание (SLS). Один из известных методов прототипирования. Изделие образуется из порошкового продукта (керамики, металлопластика) методом плавления под воздействием лазера. Преимущество SLS заключается в том, что не нужно использовать специальную структуру для поддержания подвисающих в пространстве элементов;
- Лазерная стереолитография (SLA). Известнейший метод моделирования с использованием специального жидкого полимера, который затвердевает под воздействием ртутного излучения. К достоинствам можно отнести высокое разрешение печати, наименьшее количество отходов и легкость финишной обработки изделия;
- Электронно-лучевая плавка (EBM). Прогрессивный метод адаптивного производства при помощи специальных электронных пучков. Широко используется при производстве различных титановых изделий. В отличие от моделей, произведенных путем SLS, заготовки отличаются монолитностью и высокой прочностью;
- Производство моделей с использованием ламинирования (LOM). Прогрессивный способ формирования различных моделей при помощи послойного склеивания. Полученные объекты могут быть модернизированы путем механической обработки. Достоинством данной технологии является доступность главного расходного материала — бумаги;
- Многоструйное моделирование (MJM). Популярный вид печати на основе многоструйного моделирования фотополимерного продукта. Его используют в различных отраслях промышленности. К преимуществам можно отнести возможность многоцветной печати и взаимодействие материалов различных свойств и характеристик.
Распространены и другие технологии трехмерного моделирования в адаптивном и промышленном производстве. Все они имеют свои особенности и нюансы. Однако самым простым и популярным методом 3D-печати является моделирование путем наплавления (FDM).
3 причины в пользу FDM-технологии
- Простота. Технология печати доступна даже маленьким детям. Поэтому может использоваться как в школах и офисах, так и в детских дошкольных учреждениях;
- Оригинальность. Технология FDM позволяет проектировать объекты с необычной геометрией и полостями, что бывает не под силу другим типам моделирования;
- Разнообразие. При работе с FDM-технологией могут быть использованы самые разные виды пластика, благодаря чему можно получить довольно широкий диапазон моделей, обладающих разными физико-химическими свойствами. 3D-объекты могут быть прочными, гибкими, светящимися, растворимыми в воде и с множеством других свойств.
При технологии FDM используются проверенные временем термопластики, которые применяются при традиционном производстве различных изделий.
Преимущества современной технологии печати 3D-принтера от «АНРО-технолоджи»
- Высокая скорость работы. Современные технологии обеспечивают сжатые сроки разработки прототипа изделия;
- Минимальная материалоемкость. Прогрессивные 3D-принтеры позволяют производить объекты с показателями самой низкой отходности;
- Надежная внутренняя структура. Инновационные устройства помогают спроектировать объекты больших размеров при этом с минимальным весом;
- Экологичности. Используемые при прототипировании материалы полностью безопасны и не представляют вреда для пользователя.
К дополнительным достоинствам создания 3Д-объекта можно отнести долговечное и удобное хранение материалов, не требующее особых условий.
3D-технологии — это будущее прототипирования, ведь благодаря им сегодня реализуются самые нестандартные дизайнерские проекты как в быту, так и в промышленной сфере.
Наша компания занимается разработкой и поставкам 3D-принтеров, основанных на технологии FDM. Наши 3D-принтеры со специализированным программным обеспечением подходят для детей от 6-ти лет. Небольшие 3Д-принеты могут поместиться дома и радовать детей и взрослых возможностью напечатать собственные 3D-модели предметов и игрушек.
[/mk_custom_list]
ПОСМОТРЕТЬ 3D-ПРИНТЕРЫ
Объяснение типов технологии 3D-печати
Multi Jet Fusion (MJF)
Подобно SLS, Multi Jet Fusion также создает функциональные детали из нейлонового порошка. Вместо того, чтобы использовать лазер для спекания порошка, MJF использует струйную матрицу для нанесения плавящих агентов на слой нейлонового порошка. Затем над кроватью проходит нагревательный элемент, который сплавляет каждый слой. Это приводит к более стабильным механическим свойствам по сравнению с SLS, а также к улучшенной отделке поверхности. Еще одним преимуществом процесса MJF является ускорение времени сборки, что приводит к снижению производственных затрат.
Моделирование наплавлением (FDM)
Моделирование наплавлением (FDM) — это распространенная технология настольной 3D-печати пластиковых деталей. Принтер FDM работает путем экструзии пластиковой нити слой за слоем на строительную платформу. Это экономичный и быстрый метод создания физических моделей. В некоторых случаях FDM можно использовать для функционального тестирования, но эта технология ограничена из-за того, что детали имеют относительно шероховатую поверхность и не обладают достаточной прочностью.
Процессы 3D-печати металлов
Прямое лазерное спекание металлов (DMLS)
3D-печать металлов открывает новые возможности для проектирования металлических деталей. Процесс, который мы используем в Protolabs для 3D-печати металлических деталей, — это прямое лазерное спекание металла (DMLS). Он часто используется для уменьшения металлических, многокомпонентных сборок до одного компонента или легких деталей с внутренними каналами или полыми элементами. DMLS подходит как для прототипирования, так и для производства, поскольку детали имеют такую же плотность, как и те, которые производятся традиционными методами производства металлов, такими как механическая обработка или литье. Создание металлических компонентов со сложной геометрией также делает его пригодным для медицинских применений, где конструкция детали должна имитировать органическую структуру.
Электронно-лучевая плавка (EBM)
Электронно-лучевая плавка — это еще одна технология 3D-печати металлов, в которой используется электронный луч, управляемый электромагнитными катушками, для расплавления металлического порошка. Во время сборки печатная платформа нагревается и находится в вакууме. Температура, до которой нагревается материал, определяется используемым материалом.
Когда использовать 3D-печать
Как указывалось ранее, среди приложений 3D-печати есть несколько общих знаменателей. Если количество ваших деталей относительно невелико, 3D-печать может быть оптимальной — мы рекомендуем нашим клиентам услуг 3D-печати обычно от 1 до 50 деталей. Поскольку объемы начинают приближаться к сотням, стоит изучить другие производственные процессы. Если ваша конструкция имеет сложную геометрию, которая имеет решающее значение для функционирования вашей детали, например, алюминиевый компонент с внутренним каналом охлаждения, 3D-печать может быть вашим единственным вариантом.
Выбор правильного процесса сводится к согласованию преимуществ и ограничений каждой технологии с наиболее важными требованиями вашего приложения. На ранних стадиях, когда появляются идеи, и все, что вам нужно, — это модель, чтобы поделиться с коллегой, эти ступенчатые поверхности с вашей стороны не вызывают особого беспокойства. Но как только вы доходите до точки, когда вам нужно провести пользовательское тестирование, такие факторы, как косметика и долговечность, начинают иметь значение. Хотя универсального решения не существует, правильное использование технологии 3D-печати в процессе разработки продукта снизит риски проектирования и, в конечном итоге, приведет к созданию более качественных продуктов.
Какие бывают виды 3D-печати?
В этой статье г-н Амит Котари обсуждает различные типы 3D-печати и ее процессы.
© Labdox Private Limited
Термин 3D-печать охватывает несколько производственных технологий, при которых детали создаются слой за слоем. Каждый из них различается по способу изготовления пластиковых и металлических деталей, а также по выбору материала, обработке поверхности, долговечности, скорости изготовления и стоимости.
Существует несколько типов 3D-печати, в том числе:
- Стереолитография (SLA)
- Селективное лазерное спекание (SLS)
- Моделирование методом наплавления (FDM)
- Цифровой световой процесс (DLP)
- Мультиструйный синтез (MJF)
- ПолиДжет
- Прямое лазерное спекание металла (DMLS)
- Электронно-лучевая плавка (ЭЛП)
Типы 3D-печати и ее процессы
3D-печать становится будущим эпохи производства. Это связано с тем, что существует множество различных процессов, которые подходят для различных типов материалов. Некоторые из них упомянуты ниже.
СТЕРЕОЛИТОГРАФИЯ (SLA)
Это первая в мире инновация в области 3D-печати, представленная Чаком Халлом в 1986 году. Она основана на технологии 3D-печати, называемой полимеризацией в ваннах, где материал, называемый фотополимерной камедью, специально восстанавливается с помощью источника света. Стереолитография (SLA) — это первая современная технология 3D-печати. Принтеры SLA доминируют в обеспечении повышенного уровня детализации, гладких поверхностей и высоких сопротивлений. Качественная обработка поверхности деталей SLA выглядит прилично. Он обычно используется в клинической практике, а основные приложения включают анатомические модели и микрофлюидику. В частности, в принтере SLA используются зеркала, называемые гальванометрами. Один расположен на X-образной оси, другой на Y-образной ступице. Это указывает на назначение лазерного столба поперек резервуара с резинкой, а именно разгружая и закрепляя поперечную часть изделия в зоне формовки, разрабатывая ее слой за слоем.
SLA — это средство быстрого прототипирования, при котором точность и аккуратность воспринимаются серьезно. Он может создавать объекты из информации 3D CAD всего за пару часов. Это 3D-печать, измеряющая тонкость и точность путем превращения жидких фотополимеров (уникальный вид пластика) в прочные 3D-объекты, каждый слой по очереди. Сначала пластик нагревают, чтобы он превратился в полужидкую структуру, а затем затвердевает при контакте. Принтер прорабатывает каждый из этих слоев с помощью яркого лазера, координируемого фильтрующими зеркалами по осям X и Y. Острая кромка устройства для повторного нанесения покрытия также проходит по поверхности непосредственно перед следующим этапом, чтобы гарантировать равномерное распределение каждого тонкого слоя жевательной резинки по изделию. Таким образом, цикл печати продолжается, создавая 3D-элементы снизу вверх. Когда закончите, 3D-часть обычно будет иметь синтетический душ, чтобы устранить переизбыток. Также рекомендуется постфиксировать изделие в ярком жаровне. Это делает изделие более приземленным и устойчивым.
SLA-печать получила поддержку многих предприятий. Некоторые из них включают в себя автомобили, медицинские, авиационные, развлекательные и, кроме того, для производства различных потребительских товаров. Используемые принтеры — это 3D-принтеры Vipers, ProJets и iPros, изготовленные 3D Systems.
Специальное лазерное спекание (SLS)
SLS превращает порошки на основе нейлона в прочный пластик. Поскольку детали SLS изготавливаются с использованием настоящего термопластичного материала, они прочны, подходят для утилитарных испытаний и могут поддерживать живые шарниры и защелки. В отличие от SL, детали более приземлены, но имеют более грубую отделку поверхности. SLS не нуждается в вспомогательных структурах, поэтому всю стадию формы можно использовать для перевода различных деталей в единую форму, что делает ее подходящей для количества деталей, превышающего другие меры 3D-печати. Многочисленные части SLS используются для моделирования планов, которые однажды будут иметь форму вливания.
В нем используется технология 3D-печати под названием Power Bed Fusion. Контейнер с термопластичным порошком (нейлон 6, нейлон 11, нейлон 12) нагревают чуть ниже точки его плавления. В этот момент повторное покрытие или острая кромка сохраняет небольшой слой порошка — обычно толщиной 0,1 мм — на стадии формования. Лазерная линейка начинает исследовать поверхность, где специально «спекает» порошок, то есть упрочняет поперечную часть изделия. Точно так же с SLA лазер центрируется вокруг области парой гальво. Когда фильтруется весь кросс-сегмент, стадия падает где-то на одну толщину высоты слоя, и весь цикл перефразируется до тех пор, пока элемент не будет полностью сделан. Порошок, который не спечен, оставшиеся детали поддерживают спеченный предмет, не требуя опорных конструкций. Немногие приложения для SLS связаны со сборкой практичных деталей, сложными воздуховодами, требующими пустых планов, и созданием малых тиражей. Его качества заключаются в производстве утилитарных деталей, оставляющих после себя отличные механические свойства, и со сложными расчетами. SLS ограничен тем, что требует более длительного времени выполнения заказа и его большей стоимости по сравнению с FDM / FFF.
POLYJET
PolyJet — еще одна мера 3D-печати пластиком, но есть кривая. Он может создавать различные части с разными свойствами, например, тонами и материалами. Архитекторы могут использовать эту инновацию для создания прототипов эластомерных или формованных деталей.
Моделирование плавленым напылением (FDM), также известное как Изготовление плавленых нитей (FFF)
Принтер FDM работает, выталкивая пластиковое волокно слой за слоем на формовочную площадку. Это продуманная и быстрая стратегия для предоставления актуальных моделей. Есть несколько случаев, когда FDM можно использовать для практических испытаний, однако это новшество ограничено из-за того, что детали имеют в целом грубую поверхность и не обладают достаточной прочностью. Это инновация в области 3D-печати, в которой используется цикл, называемый экструзией материала. Гаджеты Material Extrusion доступны и разумны для всех. Они работают по циклу, когда катушка волокна из прочного термопластичного материала (PLA, ABS, PET) укладывается в 3D-принтер. Затем он проталкивается двигателем через нагретый носик, где сжижается. Выталкивающая головка принтера в этой точке движется по заданным направлениям, удерживая материал для 3D-печати на этапе формирования, где волокно принтера охлаждается и цементируется, формируя прочный предмет. Когда слой закончен, принтер устанавливает другой слой, пока элемент не будет завершен. Основные приложения для FDM включают в себя электромонтажные работы, испытания конструкции и подгонки, приспособления и приспособления, а также модели для литья по выплавляемым моделям. Лучшая часть FDM заключается в том, что он предлагает наилучшее завершение поверхности в дополнение к полному тону, наряду с тем, что для его использования доступны различные материалы.
Цифровой световой процесс (DLP)
DLP имеет более быстрое время печати, чем SLA, в свете того факта, что каждый слой открывается одновременно, а не по поперечной части зоны с целью лазера . Обычные приложения для SLA и DLP — это полимерные модели инфузионной формы, украшения, стоматологические приложения и усилители. Они имеют тонкую тонкость элементов и гладкую отделку поверхности. Они ограничены своей слабостью, что делает их неудовлетворительными для использования в качестве механических деталей.
Multi Jet Fusion (MJF)
Multi Jet Fusion собирает утилитарные детали из нейлонового порошка. В отличие от использования лазера для спекания порошка, MJF использует струйный кластер, чтобы наносить специалистов по плавлению на слой нейлонового порошка. В этот момент компонент потепления игнорирует кровать, чтобы объединить каждый слой. Этот результат обеспечивает более предсказуемые механические свойства по сравнению с SLS, а также улучшенное качество поверхности. Еще одним преимуществом цикла MJF является сокращение времени изготовления, что приводит к снижению затрат на создание. MJ отличается от других типов технологий 3D-печати, которые наносят, спекают или отверждают строительный материал точечным нанесением. Вместо этого печатающая головка выбрасывает сотни капель фотополимера и отверждает/затвердевает с помощью УФ-излучения. После нанесения и отверждения слоя платформа для сборки опускается на толщину одного слоя, и процесс повторяется до тех пор, пока не будет построен 3D-объект. Еще одно отличие от технологий 3D-печати заключается в том, что вместо использования одной точки для следования по пути, очерчивающему слой поперечного сечения, машины MJ наносят строительный материал быстрым линейным способом. Изделия, изготовленные с помощью MJ, нуждаются в помощи во время печати и печатаются все время во время цикла формы с помощью растворимого материала, который удаляется при последующей обработке. MJ — это один из немногих видов инноваций в области 3D-печати, который может создавать объекты, изготовленные с использованием различных материалов и с полным тоном. Преимущество этого заключается в том, что принтеры MJ могут изготавливать несколько объектов в одну линию, не влияя на скорость печати.
Всего комментариев: 0