• Механическая обработка и изготовление деталей из металла
  • Комплектация производства промышленным оборудованием
  • Комплексная поставка микроэлектронных компонентов
+7(342)203-78-58
Тех.отд: +7-922-308-78-81

Тепловой диод: Тепловой диод позволит создавать термокомпьютеры: Наука и техника: Lenta.ru

Опубликовано: 15.07.2023 в 05:59

Автор:

Категории: Металлообработка

ОСОБЕННОСТЬ СВЕТИЛЬНИКОВ СЕРИИ ДСО — ЭТО ПРИМЕНЕНИЕ МАЛОМОЩНЫХ ДИОДОВ

  • Главной отличительной особенностью светильников серии ДСО является применение большого количества маломощных диодов мощностью 0,06 Ватт.

Почему? Для чего ?
Ведь большинство производителей используют мощные диоды 1 Ватт и более. Весь мир стремится к мощности , яркости, не для того прогресс шагал в сторону мощных диодов!

Но не все так просто, применение маломощных диодов не противоречит «концепции МОЩНОСТИ», более того позволяет расширить данное направление и внести новое понятие — «распределенная мощность»… Своего рода модернизированная версия направления COB (чип на плате).

Не нужно путать мощность и световой поток с эффективностью светоотдачи светодиода. Мир шагает по пути увеличения эффективности — Люмен/Ватт.

Именно этот параметр позволил рассматривать светодиоды в качестве источников света. Световой поток ,конечно же зависит от мощности! Но тут получаем одну серьезную проблему- тепло! От чрезмерного тепла — светодиодная концепция ничем не лучше лампы накаливания. Тепловой баланс , тепловой режим – одни из основных составляющих долгожительства светодиода. Не стоит упоминать о том что при увеличении температуры на 5-10 градусов «жизнь» светодиода резко снижается. У каждого светодиода своя кривая спада (кривая жизни) , зависит от ряда технологических , конструктивных причин и конечно же от температурного режима .

Зачастую производители светильников не в силах провести серьезные объемные испытания и вынуждены руководствоваться техническими данными производителя. Все бы хорошо – но производители не всем подряд выдают графики Lifetime и «кривые жизни» редко подлежат огласке. Более того не на все светодиоды имеются вышеназванные графики, не берусь утверждать, но максимум — на модификацию или серию светодиода. В процессе производства жизнь вносит коррективы , меняются размеры кристаллов, материалы и т.д. – таким образом изменяются плотности тока и как следствие температурный режим. Корректировки по «теплу» производят косвенным методом и все!

Таким образом мало кто из производителей светодиодной продукции знает в реальности – сколько проживет светодиод.

Например один из светодиодов Самсунг

 

Какой вывод сделаете Вы ?????

Главный вывод — 60000 часов! Нет в графике 100000 часов. Более того при температуре 80 С – 31000 часов. Все вышесказанное приводит к размышлению о ресурсе работы светодиодов, сроке службы осветительного прибора и о гарантийном сроке.

Некоторые производители светильников заявляют:- гарантия 3 года?!

В постановлении Правительства Российской Федерации от 20 июля 2011 г. № 602 «Т Р Е Б О В А Н И Я к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения» говорится:

… 6.Установить, что спад светового потока составляет: …в отношении светодиодных ламп ненаправленного света (ретрофитов) в составе осветительного прибора при соблюдении условий эксплуатации, указанных в сопроводительной документации, менее 30 процентов за 25000 часов; Если производитель заявляет срок гарантии – 3 года , следовательно спад светового потока за 3 года эксплуатации не должен быть больше 30%? Посмотрите график! Сомнительная авантюра…

Хотелось бы обратить внимание — на графике показан диод мощностью 0,5 Ватта, а какая кривая графика жизни диода 1 Ватт ? Предлагаю сделать вывод самим.

Мощность = тепло. Излишнее тепло — губительно для светодиода. Чем выше мощность –тем выше требования к тепловому балансу системы (светильника). Данное соотношение остается на совести производителя, зависит от «глубины» базовых знаний и достоверных данных от производителя по применению светодиодов , знаний теплотехники , материаловедения и т.п.

Не маловажная деталь в «ЗА» и «ПРОТИВ» мощных светодиодов это источник питания. Питание мощного диода предполагает «мощный» источник питания. Мощный источник – большие токи, большие токи – не увеличивают сроки службы источников питания и не снижают стоимость , тем более рынок жесток и диктует свои ценовые рамки! Многие производители, приверженцы 1 Ваттных светодиодов , дабы решить проблему «тепла» питают светодиод пониженной мощностью говоря о гениальности данного решения .

Диод 1 Ватт – … «питаем в щадящем режиме» и диод будет работать вечно! Так то оно так – но лукавят! Что б достичь необходимой «стандартной величины светового потока» — придется использовать большее количество светодиодов. Большее количество – это увеличение цены светодиодного светильника. Диод 1 Ватт – не дешев! Что б удержаться в ценовой нише рынка — приходится использовать более дешевые светодиоды, с худшими параметрами и качеством, иными словами с сомнительным ресурсом!

Где выгода? Не похоже ли это на самообман?

Применение маломощных светодиодов позволяет исключить ряд вышеназванных проблем. Мощность каждого светодиода 0,06 Ватта. По большому счету величины контактных площадок данных светодиодов, хватает для рассеивания тепла выделяемого при работе .Таким образом, данную светодиодную концепцию , можно использовать без вторичного теплоотвода, которую обычно выполняет металлический корпус светильника.

Светодиоды, применяемые ОКБ ЛУЧ, имеют высокий срок службы подтвержденный соответствующими испытаниями…

 

Отчет Lifetime применяемых нашей компанией светодиодов показан выше. Из него следует – что спад светового потока до 70% от начального, наступит через 91000 часов, при температуре 70 С. !!!! И 256000 часов при температуре 50С…

 

Ток питания маломощных светодиодов в разы ниже тока питания 1 Ваттных светодиодов. Большое количество диодов (от 400 штук) позволяет распределить выделяемое тепло по всей поверхности корпуса светильника , избежать концентрации локальных тепловых зон , зон «застоя теплопередачи»

Для сравнения:

Стандартное построение светильника – линейка с некоторым количеством светодиодов.

Светильник «концепции 1Ватт 2500 Lm» содержит 4 линейки по 8 светодиодов на каждой, таким образом каждая линейка имеет тепловую нагрузку 8 Ватт (не будем вдаваться в КПД светодиодов – сравнение относительное , а не абсолютное).

Светильник «концепции Маломощный светодиод 2500 Lm» производства ОКБ ЛУЧ содержит 10 линеек по 42 светодиода, тепловая нагрузка составляет 2,5 Ватта!

Результат впечатляет!

Более, того в светотехнике для формирования осветительного прибора – не маловажную роль играет «световое пятно» или площадь светящейся поверхности. Чем меньше излучаемая свет поверхность – тем выше плотность светового потока излучаемого тела. Высокая плотность светового потока в малой площади приводит к высокой степени ослепленности .

Диоды 1 Ватт формируют как раз такие локально-ослепленные участки, что негативно сказывается на качестве осветительного прибора и на освещении в целом, даже рассеиватель , применение которого регламентирует СП52 и др РД, не в силах компенсировать данный дефект.

Светильник ДСО производства ОКБ ЛУЧ содержит 420 светодиодов малой мощности. Светодиоды распределены по всей площади светильника , корпус светильника полимер, белого цвета, рассеиватель из прозрачного полистирола (возможен вариант исполнения ППМА Novattro Prism ) с призматической структурой – все это обеспечивает максимальное рассеивание светового потока, благодаря которому достигается равномерное светораспределение и исключается слепящий эффект точечных источников света.

Тепловую индуктивность создали при комнатной температуре

Японские физики обнаружили тепловую индуктивность в проводящей пластине, прикладывая к ее концам переменное напряжение и изучая тепловые потоки, вызванные эффектом Пельтье. Индуктивность выражалась в отставании фазы тепловых волн от фазы напряжения, из-за чего в образце появлялся инвертированный градиент температуры. Исследование опубликовано в Communications Physics.

Если какое-то одно физическое явление похоже на другое, то, скорее всего, оно будет описываться сильно схожей математикой. Можно найти множество примеров этого, но, пожалуй, самым понятным из них оказались законы, описывающие электрический ток и течение воды в трубах. В этом случае можно получить понятную аналогию, если сопоставить электрическое напряжение с давлением, а электрический ток — с потоком воды.

Оказывается, похожим образом можно поступить, если рассматривать процессы теплопереноса. Физикам удалось создать множество тепловых аналогов для простейших элементов электрических цепей, таких как диоды, транзисторы, логические вентили и так далее. До недавнего времени единственным не воспроизведенным тепловым элементом оставалась тепловая индуктивность. Это связано с тем, что колебательное поведение с изменением направления теплового потока от холодного к горячему обычно считается нарушением второго закона термодинамики. Предыдущие попытки создания термоиндуктивного элемента опирались либо на громоздкие неизолированные системы, либо на гелиевые температуры.

Кэндзиро Окава (Kenjiro Okawa) с коллегами из Национального института передовой промышленной науки и технологий (AIST) смогли создать тепловую индуктивность при комнатной температуре на основе эффекта Пельтье, прикладывая переменное напряжение к разным концам проводящей пластины. Меняя частоту напряжения, они нашли режим задержки тепловой фазы, что выражается в отрицательном градиенте температуры в середине образца.

Эффект Пельтье заключается в нагреве или охлаждении в точке контакта двух разнородных проводящих материалов. Локальное увеличение или уменьшение температуры создает ее градиент в окрестности контакта, указывающий направление теплового тока. Тепло не распространяется мгновенно: для оценки скорости процессов теплопроводности используется тепловая постоянная времени, которая помогает понять, насколько быстро в образце выровняется градиент температуры.

При этом ток не обязательно должен быть постоянным. Если период колебания напряжения, приложенного с разных концов образца, много больше тепловой постоянной времени, температурный профиль будет успевать перестраиваться в линейный закон от координаты (в случае справедливости одномерного приближения), а тепловой поток будет повсеместно однородным. Для противоположного случая, когда частота колебаний очень большая, температурное распределение станет постоянным, а поток нулевым за исключением краевых точек. Но когда тепловая постоянная времени оказывается сопоставимой с периодом колебаний напряжения, тепловой профиль представляет собой волнообразную зависимость с двумя точками экстремума. Тепловой поток между этими двумя точками становится отрицательным по отношению к разности температур на концах образца. Из-за возникающей задержки тепловой фазы по отношению к фазе тока этот обратный тепловой поток можно интерпретировать как термоиндуктивность, вызванную эффектом Пельтье.

Физики построили математическую модель этого эффекта для нескольких темроэлектрических материалов: меди и теллуридов висмута и сурьмы. В последнем случае оказалось, что отрицательный локальный температурный градиент может достигать 20 процентов от разности на концах образца. Однако из-за того, что амплитуда колебаний температуры составляет при этом всего 25 милликельвин, эффект невозможно обнаружить прямыми калориметрическими измерениями.

Вместо этого авторы предложили проводить измерения электрического импеданса в области образца, в которой модель предсказывает обратный градиент. Согласно расчетам, пассивная проводимость в ней должна быть несколько ниже, чем в среднем по образцу, а реактивная часть сопротивления может стать положительной. Физики убедились в этом экспериментально, получив хорошее согласие с теорией.

Ученые отмечают, что обнаруженный ими эффект существует при комнатной температуре и легко может быть настроен изменением частоты напряжения. Если удастся сформировать таким образом тепловой аналог самоиндукции, это откроет дорогу к созданию тепловых колебательных контуров.

В последнее время появляется все больше материалов, демонстрирующих необычную теплопроводность. Мы уже рассказывали про концепцию ткани с асимметричной терморегуляцией, а также про достижение рекордного коэффициента тепловой анизотропии в слоистых структурах.

Марат Хамадеев

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Что такое термодиод?

Полупроводниковые диоды позволяют электричеству течь в одном направлении и препятствуют потоку в другом направлении. Термодиод выполняет аналогичную функцию затвора, только используя тепловую энергию вместо электрической энергии.

При положительном тепловом смещении термодиод действует как теплопроводник, в то время как в противоположном случае с отрицательным тепловым смещением он подвергается плохой теплопроводности, эффективно действуя как теплоизолятор. Принцип действия этого термодиода показан на рис. 1.9.0005

Рисунок 1: Схема работы термодиода.

Когда первая клемма диода (левая сторона) имеет более высокую температуру по сравнению со второй клеммой (правая сторона), тепло может свободно течь от первой клеммы ко второй клемме. Напротив, когда второй вывод становится более горячим по сравнению с первым выводом, поток тепла от второго вывода к первому выводу сильно уменьшается. Это явление впервые наблюдал Чонси Старр на границе раздела меди и оксида меди(I) в 1919 году.30 с.

Так же, как и его электронный аналог, концепция термодиода предполагает наличие механизма нарушения симметрии. Это нарушение симметрии наиболее удобно достигается путем слияния двух материалов с разными характеристиками теплопередачи. Чонси Старр из Политехнического института Ренсселера в Нью-Йорке построил соединение, состоящее из металлической медной части, которую он соединил с ее фазой оксида меди; тем самым подтверждая принцип работы выпрямления тепла в такой структуре. Термический выпрямитель Старра физически основан на асимметричном электрон-фононном взаимодействии, возникающем на границе раздела двух разнородных материалов. Сегодня существует множество макроскопических выпрямителей, которые функционируют за счет разности характеристик материала из-за температурного смещения и/или других внешних управляющих полей. В 2006 году были построены первые микроскопические твердотельные термодиоды.

Термически симметричный

Однополупериодное выпрямление

Исследования в области тепловых или тепловых диодов предлагают теоретические модели для объяснения этого эффекта. В 2017 году в статье, опубликованной в журнале Nature, был представлен новый метод построения теплового диода, в котором диод состоит из фиксированной и подвижной клеммы. На рисунке ниже показаны отдельные изображения одного и того же устройства; подвижный терминал показан внизу, а фиксированный терминал показан вверху на обеих иллюстрациях. На иллюстрации слева диод не проводит тепло, а справа — проводит.

На иллюстрации «вперед» справа подвижный терминал приближается к неподвижному терминалу. На «обратной» иллюстрации слева клеммы находятся дальше. Это происходит из-за свойства теплового расширения материала подвижного терминала. В режиме «вперед» подвижный терминал горячее неподвижного, поэтому он расширяется вверх по направлению к неподвижному терминалу. В «реверсе» подвижный терминал холоднее неподвижного, поэтому он не расширяется вверх; и держит дистанцию.

Тепловое излучение ближнего поля (NTFR) — это процесс, при котором тепло передается посредством теплового излучения между двумя терминалами. Зазор должен быть сравним с длиной волны излучения и, следовательно, должен быть очень маленьким. Расстояние между поверхностями экспоненциально влияет на интенсивность передаваемого тепла. Такова природа исправления. Когда подвижный терминал подходит достаточно близко к фиксированному терминалу, NFTR допускает теплопроводность; в обратном — слишком далеко и теплоотдачи нет.

Термодиоды используются из-за их свойства изменять напряжение в зависимости от температуры. Разнообразные области применения включают тепловые двигатели, охлаждение и регулирование температуры. Они контролируют температурные пределы микропроцессоров с высокими тепловыми нагрузками. Дальнейшие исследования включают в себя создание микроскопических твердотельных тепловых диодов, применение концепции тепловых диодов для использования солнечной энергии и эффективное преобразование тепла в электричество при более низких температурах, среди прочего.

  • Диод (11)

Новый твердотельный термодиод, разработанный с улучшенными характеристиками выпрямления

(a) и (b) представляют собой схематическую геометрию термодиода, состоящего из Ni0,85Fe0,15S и Al2O3 для прямого и обратного направления. (c) Термический коэффициент выпрямления (γ) как функция смещения температуры (ΔT) вместе с указанными значениями. Кредит: Чжан Сюэкай

Эффективный контроль теплопередачи важен для повышения энергоэффективности. Термодиод является одним из ключевых элементов регулирования теплового потока. Подобно эффекту выпрямления тока, обнаруженному в электронных диодах, тепловой поток легко поддерживается в одном направлении в термодиоде, в то время как в противоположном направлении ему препятствуют. Значительное выпрямление тепла может быть получено при использовании соединения двух твердых материалов с противоположными тенденциями теплопроводности в зависимости от температуры. Этот тип теплового диода предлагает масштабируемость и простую аналогию конструкции электрического диода.

Группа под руководством профессора Тонга Пэна из Института физических наук Хэфэй (HFIPS) Китайской академии наук (CAS) сообщила, что они обнаружили сульфиды Ni 1-x Fe x S, a ряд материалов, которые могут открыть новые способы создания лучшего термического выпрямления.

Недавно та же команда объявила, что они создали новый термодиод из комбинированного материала Ni 0,85 Fe 0,15 S и оксида алюминия, который продемонстрировал превосходные характеристики по сравнению с любыми другими твердотельными термодиодами, о которых когда-либо сообщалось. Их актуальный результат был опубликован в Journal 9.0049  Применена физическая проверка .

В своей предыдущей работе они обнаружили резкий скачок теплопроводности вблизи фазового перехода первого рода (FOPT) в Ni 1-x Fe x S. Изменение теплопроводности достигает 200%, что свидетельствует о том, что сульфиды являются перспективными материалами для создания твердотельных термодиодов.

На этой основе они сконструировали термодиод с Ni 0,85 Fe 0,15 S (связанный 10 мас.% Ag) и Al 2 O 3  в виде двух сегментов. Термодиод демонстрирует отличные характеристики теплового выпрямления. При настройке холодного конца термодиода на 250 К при температурном смещении 97 К максимальный коэффициент теплового выпрямления γ max достигает 1,51.

Разработан новый твердотельный термодиод с улучшенными характеристиками выпрямления. Кредит: Чжан Сюэкай

Ni 0,85 Fe 0,15 S/Al 2 O 3  термодиод имеет преимущества перед другими твердотельными термодиодами. А именно, его γ max  является наибольшим среди заявленных значений, в то время как требуемое температурное смещение для возбуждения γ max как минимум на 100 K меньше, чем у тепловых диодов, имеющих сопоставимые γ max 9 0040 ценности.

Выдающийся эффект теплового выпрямления современного термодиода может иметь потенциальное применение в системах управления температурой, таких как калорическое охлаждение и преобразование энергии.

Кроме того, на основе систематического экспериментального и теоретического анализа группа выяснила, как на коэффициент теплового выпрямления влияет температура холодного конца, соотношение длин Ni 0,85 Fe 0,15 S и Al 2 O 3  сегментов, а резкость ВОПП Ni 0,85 Fe 0,15 S.

Эти новые результаты служат руководством для разработки новых твердотельных тепловых диодов в будущем.

Дополнительная информация:
Сюэкай Чжан и др., Большое термическое выпрямление в твердотельном термодиоде, изготовленном из легированного железом сульфида никеля и оксида алюминия, Physical Review Applied (2021). DOI: 10.1103/PhysRevApplied.16.014031

Предоставлено
Китайская академия наук

Цитата :
Разработан новый твердотельный термодиод с улучшенными характеристиками выпрямления (2 августа 2021 г.

Всего комментариев: 0

Оставить комментарий

Ваш email не будет опубликован.

Вы можете использовать следующие HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>