• Механическая обработка и изготовление деталей из металла
  • Комплектация производства промышленным оборудованием
  • Комплексная поставка микроэлектронных компонентов
+7(342)203-78-58
Тех.отд: +7-922-308-78-81

Чем отличается пластмасса от пластика: Пластик и пластмасса – в чем отличие?

Опубликовано: 27.03.2023 в 19:00

Автор:

Категории: Оборудование для раствора и бетона

Содержание

Виды и свойства пластмасс. Определение типа пластика

В современных автомобилях доля пластмассовых деталей постоянно растет, а значит растет и количество ремонтов на пластмассовых поверхностях.

Во многом окраска пластмасс отличается от окраски металлических поверхностей, что обусловлено, в первую очередь, самими свойствами пластмасс: они более эластичны и имеют меньшую адгезию к ЛКМ. А поскольку разнообразие пластмасс, применяемых в автомобилестроении, очень широко, то не будь каких-нибудь универсальных ремонтных материалов, обеспечивающих создание качественного ЛКП на большинстве из их типов, нам бы, наверное, пришлось с головой погружаться в изучение молекулярной химии полимеров.

К счастью, делать этого не придется: на практике ремонт пластмасс окажется значительно проще. Но все же некоторая информация о типах пластмасс и их свойствах нам пригодится.

Содержание

  1. Пластмассы — в массы
  2. Преимущества пластмасс
  3. Зачем красить пластик?
  4. Что такое пластмасса?
  5. Виды пластмасс
  6. Термопласты (термопластичные полимеры, пластомеры)
  7. Реактопласты (термореактивные пластмассы, дуропласты)
  8. Эластомеры
  9. Определение типа пластика. Маркировка
  10. Примеры наиболее распространенных в автомобилестроении типов пластика
  11. Полипропилен — РР, модифицированный полипропилен — PP/EPDM
  12. ABS (сополимер акрилонитрила, бутадиена и стирола)
  13. Поликарбонат — PC
  14. Полиамиды — PA
  15. Полиуретан — PU, PUR
  16. Стеклопластики — SMC, BMC, UP-GF
  17. Если тип пластика неизвестен
  18. Бонусы
  19. Расшифровка обозначения пластмасс
  20. Обозначения наиболее распространенных пластиков
  21. Классификация пластиков в зависимости от жесткости
  22. Основные модификации полипропилена и области их применения в автомобиле
  23. Методы определения типа пластмассы

Пластмассы — в массы

В XX веке человечество пережило синтетическую революцию, в его жизни появились новые материалы — пластмассы. Пластмассу можно смело отнести к одному из главных открытий человечества. Без изобретения этого материала многих других открытий получить бы не удалось или удалось бы намного позже.

Александр Паркс. Изобретатель пластмассы

Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, он и представить себе не мог, какое важное открытие ему удалось совершить.

Ингредиентами первой пластмассы стала нитроцеллюлоза, спирт и камфора. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так был изобретен родоначальник современных пластмасс — паркезин.

От природных материалов к полностью синтетическим развитие пластмасс пришло позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические органические материалы, да и природные тоже. Это открытие принесло в 1953 году профессору Штаудингеру Нобелевскую премию.

С тех-то пор все и началось… Чуть ли не каждый год из химических лабораторий начали сообщать об открытии очередного синтетического материала с невиданными ранее свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластмасс, без которых жизнь современного человека и представить себе нельзя.

Пластмассы применяются везде, где только можно: в обеспечении комфортного быта людей, сельском хозяйстве, во всех сферах промышленности. Не стало исключением и автомобилестроение. Здесь пластик применяется все шире, стремительно смещая с позиций своего главного технологического конкурента — металл.

По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как железо, олово и свинец были знакомы человеку еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, пластмасса во многом превосходит металл.

Преимущества пластмасс

Во-первых, пластик значительно легче металла. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива, а значит и снизить выброс выхлопных газов.

Общее снижение веса автомобиля на 100 кг за счет применения пластмассовых деталей позволяет экономить до одного литра топлива на 100 км.

Во-вторых, применение пластмасс дает колоссальные возможности для формообразования, позволяя изготавливать детали самых сложных и хитроумных форм и реализовывать любые дизайнерские идеи.

К преимуществам пластмасс также относятся их высокая коррозионная стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и другим агрессивным химическим веществам, высокий коэффициент шумоподавления, отменные электро- и теплоизоляционные характеристики.

Так что неудивительно, почему пластмассы получили такое широкое распространение в автомобилестроении.

Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомните легендарный «Трабант», выпускавшийся в Германии более 40 лет назад. Кузов этого героя анекдотов был полностью изготовлен из слоистого пластика.

Для получения этого пластика использовалась поступавшая с текстильных фабрик хлопчатобумажная ткань. 65 слоев этой ткани, чередуясь со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.

Trabant. Самый популярный в мире автомобиль из пластика

Цельнопластмассовые кузова серийных авто разрабатываются и сейчас, многие кузова спортивных автомобилей полностью делают из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.

Только если кузовные детали народного Трабанта вызывали скорее ироническую усмешку, то пластиковые элементы современных авто, обладающие высочайшей прочностью, антикоррозионной стойкостью и малым удельным весом, заставляют с уважением относиться к этому материалу.

Заканчивая разговор о преимуществах пластмасс нельзя обойти стороной тот факт, что большинство из них хорошо поддается окрашиванию, пускай и с некоторыми оговорками. Не будь у пластика такой возможности, вряд ли бы этот материал снискал столь высокую популярность.

Зачем красить пластик?

Необходимость покраски пластмасс продиктована с одной стороны эстетическими соображениями, а с другой — необходимостью защищать пластики. Ведь ничего вечного нет. Пластмасса хоть и не гниет, но в процессе эксплуатации и атмосферных воздействий она все равно повергается старению и деструкции. А нанесенный лакокрасочный слой защищает поверхность пластика от различных агрессивных воздействий и продлевает срок его службы.

На заводе покраска пластмассовых деталей трудностей не вызывает. Технологии здесь отлажены, да и речь в данном случае идет о покраске новых одинаковых деталей из одной и той же пластмассы. А вот в условиях мастерской маляры уже сталкиваются с проблемой, заключающейся в разнородности материалов различных деталей.

Вот здесь и приходится ответить себе на вопрос: «Что вообще такое пластмасса? Из чего ее делают, каковы ее свойства и основные виды?».

Что такое пластмасса?

В соответствии с отечественным государственным стандартом:

Пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или
деформации.

Если из такого сложного определения убрать первое слово «пластмассами», можно даже и не догадаться, о чем вообще идет речь. Что ж, попробуем немного разобраться.

«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.

Основу любой пластмассы составляет полимер (то самое «высокомолекулярное органическое соединение» из определения выше).

Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).

Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:

Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в одно целое.

Цепочки молекул полипропилена

По происхождению все полимеры делят на синтетичес­кие и природные. Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.

Синтетические полимеры получают в процессе химического синтеза из соответствующих мо­номеров.

В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.

Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:

Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен, пропилен → полипропилен, винилхлорид → поливинилхлорид и т.д.

Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).

Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные свойства, такие как текучесть, пластичность, плотность, прочность, долговечность и т.д.

Виды пластмасс

Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, объясняющим природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы:

  • термопласты;
  • реактопласты;
  • эластомеры.

Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, вместе с химическим составом.

Термопласты (термопластичные полимеры, пластомеры)

Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние.

Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая. При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной. Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке.

Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз.

Эта особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет!

Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством нагрева.

Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д.

К термопластам относятся полипропилен (РР), поливинихлорид (PVC), сополимеры акрилонитрила, бутадиена и стирола (ABS), полистирол (PS), поливинилацетат (PVA), полиэтилен (РЕ), полиметилметакрилат (оргстекло) (РММА), полиамид (РА), поликарбонат (PC), полиоксиметилен (РОМ) и другие.

Реактопласты (термореактивные пластмассы, дуропласты)

Если для термопластов процесс размягчения и отверждения можно повторять многократно, то реактопласты после однократного нагревания (при формовании изделия) переходят в нерастворимое твердое состояние, и при повторном нагревании уже не размягчаются. Происходит необратимое отверждение.

В начальном состоянии реактопласты имеют линейную структуру макромолекул, но при нагревании во время производства формового изделия макромолекулы «сшиваются», создавая сетчатую пространственную структуру. Именно благодаря такой структуре тесно сцепленных, «сшитых» молекул, материал получается твердым и неэластичным, и теряет способность повторно переходить в вязкотекучее состояние.

Из-за этой особенности термореактивные пластмассы не могут подвергаться повторной переработке. Также их нельзя сваривать и формовать в нагретом состоянии — при перегреве молекулярные цепочки распадаются и материал разрушается.

Эти материалы являются достаточно термостойкими, поэтому их используют, например, для производства деталей картера в подкапотном пространстве. Из армированных (например стекловолокном) реактопластов производят крупногабаритные наружные кузовные детали (капоты, крылья, крышки багажников).

К группе реактопластов относятся материалы на основе фенол-формальдегидных (PF), карбамидо-формальдегидных (UF), эпоксидных (EP) и полиэфирных смол.

Эластомеры

Эластомеры — это пластмассы с высокоэластичными свойствами. При силовом воздействии они проявляют гибкость, а после снятия напряжения возвращают исходную форму. От прочих эластичных пластмасс эластомеры отличаются способностью сохранять свою эластичность в большом температурном диапазоне. Так, например, силиконовый каучук остается упругим в диапазоне температур от -60 до +250 °С.

Эластомеры, так же как и реактопласты, состоят из пространственно-сетчатых макромолекул. Только в отличие от реактопластов, макромолекулы эластомеров расположены более широко. Именно такое размещение обуславливает их упругие свойства.

В силу своего сетчатого строения эластомеры неплавки и нерастворимы, как и реактопласты, но набухают (реактопласты не набухают).

К группе эластомеров относятся различные каучуки, полиуретан и силиконы. В автомобилестроении их используют преимущественно для изготовления шин, уплотнителей, спойлеров и т.д.

В автомобилестроении используются все три типа пластиков. Также выпускаются смеси из всех трех видов полимеров — так называемые «бленды» (blends), свойства которых зависят от соотношения смеси и вида компонентов.

Определение типа пластика. Маркировка

Любой ремонт пластиковой детали должен начинаться с определения типа пластмассы, из которой изготовлена деталь. Если в прошлом это давалось не всегда просто, то сейчас «опознать» пластик легко — все детали, как правило, маркируются.

Обозначение типа пластмассы производители обычно выштамповывают с внутренней стороны детали, будь то бампер или крышка мобильного телефона. Тип пластика, как правило, заключен в своеобразные скобки и может выглядеть следующим образом: >PP/EPDM<, >PUR<, <ABS>.

Задание: снимите крышку своего мобильного телефона и посмотрите из какого типа пластмассы он изготовлен. Чаще всего это >PC<.

Вариантов таких аббревиатур может быть очень много. Рассмотрим несколько самых распространенных в автомобилестроении типов пластмасс.

Примеры наиболее распространенных в автомобилестроении типов пластика

Полипропилен — РР, модифицированный полипропилен — PP/EPDM

Полипропилен — самый распространенный в автомобильной промышленности тип пластика. В большинстве случаев при ремонте мы будем иметь дело с его различными модификациями.

Полипропилен обладает массой преимуществ: низкой плотностью (0,90 г/см³ — наименьшее значение среди всех пластмасс), высокой механической прочностью, химической стойкостью (устойчив к разбавленным кислотам и большинству щелочей, моющим средствам, маслам, растворителям), термостойкостью (начинает размягчаться при 140°C, температура плавления 175°C). Он почти не подвергается коррозионному растрескиванию, обладает хорошей способностью к восстановлению. Кроме того, полипропилен является экологически чистым материалом.

Столь ценные свойства этого пластика дают повод считать его идеальным материалом для автомобилестроения. Благодаря достоинствам полипропилена его даже начали называть «королем пластмасс».

На основе полипропилена изготовлены практически все бампера, также этот материал используется при изготовлении спойлеров, деталей салона, приборных панелей, расширительных бачков, решеток радиатора, воздуховодов, корпусов и крышек аккумуляторных батарей и т.д.

Только при литье большинства этих деталей используется не чистый полипропилен, а его различные модификации.

«Чистый» немодифицированный полипропилен очень чувствителен к кислороду и ультрафиолетовому излучению, в процессе эксплуатации он быстро теряет свои свойства и становится хрупким. По той же причине нанесенное на чистый полипропилен отделочное покрытие не может обладать прочной и долговечной адгезией.

Введенные же в полипропилен добавки — часто в виде резины и талька — существенно улучшают его свойства и дают возможность его покраски.

Покраске поддается только модифицированный полипропилен. На «чистом» полипропилене адгезия будет очень слабой! Из чистого полипропилена  >РР< изготавливают, например, бачки омывателей, расширительные емкости, одноразовую посуду, стаканчики и т.д.

Все модификации полипропилена первыми двумя буквами обозначаются все равно, как >РР…<, какой бы длинной не была аббревиатура. Самый распространенный продукт этих модификаций — >PP/EPDM< (сополимер полипропилена и этиленпропиленового каучука).

ABS (сополимер акрилонитрила, бутадиена и стирола)

ABS — эластичный, но в тоже время ударопрочный пластик. За эластичность отвечает составляющая каучука (бутадиена), за прочность — акрилонитрил. Этот пластик чувствителен к ультрафиолетовому излучению — под его воздействием пластик быстро стареет. Поэтому изделия из ABS нельзя долго держать на свету и нужно обязательно окрашивать.

Чаще всего используется для производства корпусов фонарей и наружных зеркал, решеток радиатора, облицовки приборной панели, обивки дверей, колпаков колес, задних спойлеров и т. п.

Поликарбонат — PC

Один из наиболее ударопрочных термопластов. Чтобы понять, насколько прочен поликарбонат, достаточно того факта, что это материал используется при изготовлении пуленепробиваемых банковских стоек.

Помимо прочности поликарбонаты отличаются легкостью, стойкостью к световому старению и перепадам температур, пожаробезопасностью (это трудно воспламеняющийся самозатухающий материал).

К сожалению, поликарбонаты чувствительны к воздействию растворителей и имеют тенденцию к растрескиванию под воздействием внутренних напряжений.

Не подходящие агрессивные растворители могут сильно ухудшать прочность этого пластика, поэтому при покраске деталей, где прочность имеет ключевое значение (например мотоциклетного шлема из поликарбоната) нужно быть очень внимательными и четко соблюдать рекомендации производителя, а в некоторых случаях даже принципиально отказаться от покраски. Зато спойлеры, решетки радиатора и панели бамперов из поликарбоната можно красить без проблем.

Полиамиды — PA

Полиамиды — жесткие, прочные и при этом эластичные материалы. Детали из полиамида выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и сплавов. Полиамид обладает высокой стойкостью к износу, химической устойчивостью. Он почти невосприимчив к большинству органических растворителей.

Чаще всего полиамиды используют для изготовления съемных автомобильных колпаков, различных втулок и вкладышей, хомутов трубок, языков замка дверей и защелок.

Полиуретан — PU, PUR

Пока свое широкое распространение в производстве не получил полипропилен, самым популярным материалом для изготовления различных эластичных деталей автомобиля был полиуретан. Из него делали рулевые колеса, грязезащитные чехлы, покрытия для педалей, мягкие дверные ручки, спойлеры и т.д.

У многих этот тип пластика вызывает ассоциации с маркой Mercedes. До недавнего времени почти на всех моделях из полиуретана делали бамперы, боковые накладки дверц, порогов.

Для производства деталей из этого пластика требуется не такое сложное оборудование, как для полипропиленовых. Поэтому сегодня многие частные компании предпочитают работать именно с полиуретаном при изготовлении различных деталей для тюнинга автомобилей.

Стеклопластики — SMC, BMC, UP-GF

Стеклопластики — один из главных представителей семейства так называемых «армированных пластиков». Эти материалы изготавливаются на базе эпоксидных или полиэфирных смол (это реактопласты) со стеклотканью в качестве наполнителя.

Благодаря своим высоким физико-механическим характеристикам, а также стойкости к различным агрессивным воздействиям, стеклопластики получили широкое применение во многих сферах промышленности. Этот материал используется, например, в производстве кузовов американских минивэнов.

В процессе производства деталей из стеклопластика могут применяться технологии типа «сэндвич», когда детали состоят из нескольких слоев тех или иных материалов, каждый из которых отвечает определенным требованиям (прочности, химической стойкости, абразивоустойчивости).

Если тип пластика неизвестен

Вот к нам в руки попала пластиковая деталь, не имеющая на себе никакой маркировки. Но нам позарез нужно выяснить что это за материал, или хотя бы его тип — термопласт это или реактопласт.

Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не будут взаимодействовать. В связи с этим появляется необходимость «опознать» неизвестный пластик, чтобы правильно подобрать ту же сварочную присадку.

Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и т.д.

Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к тому или иному типу полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.

Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт.

Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.

Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.

Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то она наверняка изготовлена из термопласта, а если имеются следы снятых наждаком заусенцев, значит это реактопласт.

Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.

Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие пластики имеют плотность больше единицы, поэтому они будут тонуть.

Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.

P.S. В следующей статье мы уделим внимание вопросам подготовки и покраски пластиковых деталей.

Бонусы

Расшифровка обозначения пластмасс

Обозначения наиболее распространенных пластиков

Классификация пластиков в зависимости от жесткости

Основные модификации полипропилена и области их применения в автомобиле

Методы определения типа пластмассы

 

Пластик или металл? Если главное — душевное спокойствие

На этапе проектирования любого продукта следует тщательно продумать важный аспект — материалы, которые можно использовать. Материалы обладают разными свойствами. Важно взвесить ключевые характеристики и сопоставить их с потребностями применения. Независимо от конечного продукта — будь то игрушка, пирожное или электронное устройство, — необходимо учитывать такие характеристики, как эстетичность, долговечность, вес, цвет, прочность, стоимость и многое другое, чтобы гарантировать наилучший результат и соответствие продукта предъявляемым к нему требованиям.

Одними из важнейших характеристик любого изделия, независимо от его предназначения, являются те, которые обеспечивают безопасность потребителя.

Несомненно, если речь идет об общественной безопасности, компромиссы недопустимы.

И хотя охрана здоровья и безопасность обеспечиваются соответствующими законами, есть и моральные обязательства — заботиться о благополучии людей и расценивать их безопасность как первоочередную задачу.

Рассмотрим свойства двух основных материалов, используемых в электронных устройствах отображения информации, и зададим вопрос — выберете вы пластик или металл для конкретных конструктивных элементов?




Огнезащита — чтобы сдерживать распространение огня

Стремление обеспечить защиту от пожара в общественных местах оказывает значительное влияние на выбор материалов. В соответствии с требованиями законодательства при строительстве зданий необходимо использовать огнезащитные элементы, призванные ограничивать распространение огня и давать людям больше времени для спасения.

В 2019 году администрация аэропорта Брюсселя объявила тендер, в котором видеостены из жидкокристаллических и светодиодных модулей описываются как «покрытия». Это оказало значительное влияние на производителей электронного оборудования, поскольку теперь их продукция относится к той же классификации по пожаробезопасности, что и строительные материалы. В испытаниях на пожаробезопасность измеряется реакция изделия на огонь, включая вклад в распространение и интенсивность пламени, а также образование дыма и горящих капель.

 

Успешное прохождение этого испытания будет зависеть прежде всего от используемых в электронном оборудовании материалов, и в основе процесса проектирования должно лежать понимание свойств конкретных материалов.

  • Металл — негорючий материал. Он обладает высокой теплостойкостью с очень высокой температурой плавления, что замедляет его разрушение при экстремально высоких температурах.
  • Пластик, напротив, очень горюч. При этом горящий пластик капает и выделяет опасные химические вещества.

Простой в изготовлении пластик, в той или иной форме, безусловно, будет необходим для производства определенных компонентов. Но если речь идет о корпусе или каркасе, на котором построено устройство, — занимающем обычно большое пространство и являющемся основной частью оборудования, — выбор материала будет иметь решающее значение. Что бы вы выбрали — пластик или металл?

 

Светодиодное изделие в пластиковом корпусе НЕ выдержит испытания на пожарную нагрузку. Можно использовать обходные пути, вкладывая средства в ряд структурных или производственных дополнений, таких как разбрызгиватели или дымоотводы. Это существенные дополнительные расходы, но самое главное, когда речь идет о душевном спокойствии, — вы выберете пластик или металл?




Теплостойкость — чтобы обеспечить длительное, эффективное использование

Будем надеяться, что уровень пожаробезопасности изделия никогда не придется проверять в реальной жизни. Однако остается такая серьезная проблема, как тепло, постоянно вырабатываемое электронным оборудованием.

Тепло — не друг для электронных устройств. Препятствование накоплению тепла для поддержания постоянной температуры является большой проблемой для производителей и операторов. Управление теплом не только оказывает влияние на срок службы устройства и стабильность его работы, но и крайне важно для защиты от возгорания.

  • Металл — отличный проводник тепла, и поэтому очень эффективно рассеивает тепло, отводя его от внутренних частей устройства.
  • Пластик — теплоизолятор. Высокие температуры удерживаются внутри устройства, накапливаясь с течением времени.

Если вы хотите защитить свои инвестиции и продлить срок службы вашего устройства, какой материал вы бы выбрали для корпуса — пластик или металл?




Точность — для идеального выравнивания

Точность выравнивания имеет первостепенное значение для создания общего визуального воздействия — ведь никто не хочет видеть зазоры между модулями на светодиодной стене. Тепло является основным фактором, непосредственно влияющим на целостность корпусов, которые поддерживают светодиодные пиксельные карты.

  • Металл точно обработан по размеру. Он прочный, жесткий и долговечный, даже при изменении температуры.
  • Пластик податлив. Он будет расширяться и сжиматься при изменении температуры.

Инвестируя в новейшие технологии визуализации, вы хотите, чтобы изображение было гладким и цельным, идеально ровным и однородным, — создавая впечатление единого огромного холста. Вы хотите привести вашу аудиторию в восторг. Какой материал позволит вам добиться этого — пластик или металл?




Возможность вторичной переработки — для экологической ответственности

Возможность переработки изделия будет оказывать влияние не только на окружающую среду, но и на репутацию вашей компании. Организации должны ответственно относиться к окружающей среде, чтобы соответствовать ожиданиям акционеров и общественности.

    • Металл подлежит вторичной переработке на 100%. Его можно перерабатывать снова и снова, без изменения свойств.
    • Не весь пластик подлежит вторичной переработке. В связи со способом изготовления пластика его не всегда возможно вернуть к исходным составляющим элементам.

Подсчитывая выбросы углекислого газа, об использовании какого материала вы можете с наибольшей уверенностью заявлять — пластика или металла?




Итак, что это будет, пластик или металл?

Суть вопроса не в простом соотношении цены и качества, а в соответствии требованиям при разумных затратах. Уже одно это делает выбор между пластиком и металлом существенно более простым. Конечно, сам вопрос значительно проще. Нужен ли Вам пластик?




Узнайте больше из нашего документа:

Загрузить документ


Пластики и полимеры: в чем разница?

16

Январь

Пластмассы и полимеры: в чем разница?

Автор: wkmounts / 16 января 2020 г.

Хотя эти термины часто используются взаимозаменяемо, полимеры и пластмассы не всегда одно и то же. Полимеры могут существовать органически или быть созданы синтетически и состоять из цепочек соединенных отдельных молекул или мономеров. Пластмассы представляют собой тип полимера, состоящий из цепочек полимеров, которые могут быть частично органическими или полностью синтетическими.

Проще говоря, все пластмассы являются полимерами, но не все полимеры являются пластмассами. Ниже мы рассмотрим состав, физические свойства и области применения полимеров и пластиков, чтобы дать четкое объяснение различий между ними.

Что такое полимеры?

Полимеры могут встречаться органически в форме природных или биополимеров, таких как шерсть, хлопок или дерево, или они могут быть синтезированы в полуорганические или полностью синтетические материалы. Синтетические полимеры делятся на три категории:

  1. Эластомеры представляют собой эластичные материалы с высокой гибкостью и низкой прочностью молекулярных связей (как резина).
    Полимерные волокна состоят из полимерных цепей, которые имеют более прочные молекулярные связи, чем эластомеры. Волокна более жесткие и менее эластичные, чем эластомеры, и могут состоять как из натуральных, так и из синтетических материалов.
  2. Термопласты более жесткие, чем волокна и эластомеры, и отличаются способностью сохранять свою молекулярную структуру при воздействии тепла. При нагревании до точки плавления термопласты будут плавиться, а не гореть, что делает их идеальными для формовки.

Основная структура, физические свойства и использование синтетического полимера помогают определить его классификацию. Учитывая, что существуют тысячи полимеров, важно понимать свойства и области применения полимеров, чтобы убедиться, что они используются в соответствующих целях.

Структура

Молекулярная структура полимера определяет основные свойства материала. При попытке классифицировать конкретный полимерный материал необходимо учитывать следующие структурные аспекты:

  • Мономерная композиция. Знание того, какие мономеры составляют полимерную цепь, сколько каждого из них и природа этих мономеров поможет классифицировать материал.
  • Характеристики цепи. Средняя длина и вес цепей в полимере помогают определить степень полимеризации и молекулярную форму полимера.
  • Молекулярные связи. Структура полимера может определяться способами, которыми мономеры связаны друг с другом, а также наличием перекрестных разветвленных связей между полимерными цепями.
  • Метод полимеризации. Способ, с помощью которого мономеры объединяются в полимеры, определяет структуру полимера, будь то естественный процесс или синтетическая полимеризация с использованием тепла, химикатов или конденсации.

Свойства

Полимеры бывают самых разных форм и могут быть дополнительно классифицированы на основе их физических свойств. Некоторые отличительные характеристики включают в себя:

  • Плотность
  • Термические свойства
  • Кристаллическая структура
  • Твердость
  • Прочность на растяжение
  • Обрабатываемость
  • Формуемость
  • Растворимость

Приложения

Полимеры также можно классифицировать по областям применения. Из-за разнообразия материалов, которые могут быть созданы путем полимеризации, полимеры находят широкое применение:

  • Формованные и формованные изделия
  • Тонкие пленки и листы
  • Эластомеры
  • Клеи
  • Покрытия, краски и чернила
  • Пряжа и прочие волокна

Что такое пластик?

Пластмассы представляют собой синтетические или полуорганические полимеры, изготовленные из нефти или нефти с использованием химических веществ и конденсации для образования молекулярных связей. Хотя полимеры могут встречаться в природе, пластмассы полностью созданы человеком.

Однако, поскольку пластик содержит полимеры, он обладает схожими физическими свойствами и универсальностью, что делает его пригодным для широкого спектра применений. Пластмассы можно разделить на две категории: термореактивные пластмассы и термопласты.

Термореактивные пластмассы

Термореактивные пластмассы закалены в постоянный дизайн. После того, как они были сформированы, термореактивные материалы остаются в фиксированной форме даже при повторном воздействии тепла. После затвердевания термореактивные материалы будут гореть, а не плавиться при воздействии экстремальных температур. Их высокая устойчивость к нагреву и коррозии делает термореактивные пластмассы особенно полезными в приложениях, где требуются надежные прецизионные компоненты, которые не будут изменять форму или ползти при воздействии экстремальных температурных изменений.

Обычно используемые термореактивные пластмассы включают:

  • Полиуретан
  • Эпоксидная смола
  • Фенольный
  • Некоторые полиэфиры
  • Фенольный

Благодаря своей долговечности и термостойкости реактопласты используются в различных областях, таких как:

  • Электронные компоненты и изоляторы
  • Тепловые экраны
  • Детали двигателя и крышки
  • Бытовая техника
  • Компоненты освещения
  • Энергетическое оборудование

Термопласты

В отличие от реактопластов, термопласты можно повторно нагревать и изменять форму без каких-либо изменений в их основном молекулярном составе. Термопласты плавятся при воздействии экстремальных температур, что делает их идеальными для процессов формования и литья под давлением. Они обычно используются для пластиковых изделий, которые не подвергаются воздействию экстремальных температур, таких как пластиковые игрушки, зубные щетки, пластиковые контейнеры для хранения, бутылки для напитков и другие потребительские товары.

Термопласты доступны в двух различных формах, аморфной и полукристаллической, в зависимости от их основной молекулярной структуры.

  • Термопласты аморфные. Аморфные термопласты состоят из полимерных цепей, которые не расположены каким-либо определенным образом — полимерные нити перемешаны друг с другом неравномерным и неорганизованным образом. Аморфные термопласты имеют очень низкую термостойкость, но прочны при низких температурах. Они имеют тенденцию быть прозрачными из-за отсутствия структуры, что делает их полезными для пластиковых окон и осветительных приборов.
  • Полукристаллические термопласты. Полукристаллические термопласты состоят из упорядоченно расположенных полимерных нитей или имеют кристаллическую структуру, смешанную с аморфными областями. Количество кристаллической или аморфной структуры определяет физические характеристики пластика. Чем выше кристаллическая организация, тем непрозрачнее становится материал. Полукристаллические термопласты обладают большей прочностью, стабильностью, термостойкостью и химической стойкостью, чем их полностью аморфные аналоги.

Термопласты охватывают широкий спектр материалов, в том числе:

  • Полиэтилен (ПЭ)
  • Полистирол (ПС)
  • Полипропилен
  • Поливинилхлорид (ПВХ)
  • Полиэстер
  • Нейлон
  • Термопластичные олефины
  • Сантопрен
  • Акрилонитрилбутадиенстирол (АБС)
  • Ацетали

Благодаря своей универсальности термопласты находят применение во множестве отраслей и областей применения, в том числе:

  • Выдувное формование и литье под давлением
  • Товары народного потребления
  • Автомобильные компоненты
  • Технические и механические детали
  • Медицинское оборудование
  • Контейнеры для хранения
  • Упаковочные материалы

Термопласты легко поддаются формованию, что делает их идеальными для использования в производстве выдувного формования. В процессе выдувного формования используется сжатый воздух, который нагнетает расплавленную пластиковую смолу в предварительно изготовленную форму для создания бутылок, контейнеров, ящиков и других полых деталей и компонентов.

Выдувное формование с OMICO

Имея более чем 50-летний опыт работы с полимерами и пластмассами, OMICO рада предоставить исключительную продукцию, изготовленную методом выдувного формования, для широкого спектра отраслей промышленности, включая автомобильную, медицинскую, бытовую технику, аэрокосмическую промышленность и товары для домашних животных. Наше предприятие, сертифицированное по стандарту IATF-16949, включает в себя парк передового оборудования для выдувного формования, гарантирующего изготовление деталей высочайшего качества. Мы используем только самую чистую пластиковую продукцию непосредственно от производителя, Exxon Mobil, и наша система включает в себя специальное контрольное оборудование, чтобы гарантировать, что наша продукция является стабильной и надежной.

Для получения дополнительной информации о наших исключительных возможностях выдувного формования свяжитесь с нами или запросите предложение сегодня!

Свяжитесь с нами для OMICO Plastics, Inc.

Вы ищете подходящего производителя выдувного формования для своей компании? OMICO Plastics — давно существующая компания по выдувному формованию в Оуэнсборо, Кентукки. Мы работали с такими компаниями, как Fisher-Price, Toyota, Whirlpool и многими другими.

Свяжитесь с намиПродукция и возможности

Ищете дополнительную информацию?

Посетите наш блог, чтобы узнать о последних новостях и смежных темах в области выдувного формования.

Готовы начать?

Запросить предложение сегодня

Пластик — это пластик, верно? Есть ли отличия?

Низкая плотность и высокая плотность — в чем разница?

  

  Вопрос:   В чем разница между  полиэтилен низкой плотности и полиэтилен высокой плотности ?

Ответ:  Самое большое различие заключается в том, насколько тесно молекулы связаны друг с другом в структуре продукта. Высокая плотность имеет гораздо больше молекул в том же объеме пространства. Это приводит к тому, что высокая плотность имеет разные качества по сравнению с низкой плотностью. Например, полиэтилен высокой плотности той же толщины будет более прочным, более устойчивым к проколам, более устойчивым к разрыву, более жестким, более жестким, более химически стойким, чем полиэтилен низкой плотности, изготовленный из полиэтилена той же марки. Полиэтилен низкой плотности — более мягкий материал, более податливый, более удобный. Это обычные виды полиэтилена. В каждом типе существуют различные уровни качества, добавки и многое другое, чтобы варьировать продукты от их естественного состояния, чтобы придать им качества, необходимые для приложений.

 Есть много причин, по которым один может использоваться в данном приложении, по сравнению с использованием другого. Позвоните по номеру 866.597.9298 , если вам нужны дополнительные разъяснения.

Классификация пластмасс

Вопрос:   Какие существуют классификации пластмасс?

Ответ:   Полиэтилен подразделяется на несколько различных категорий в зависимости от его плотности и разветвленности.

  • Полиэтилен сверхвысокой молекулярной массы (СВМПЭ)
  • Полиэтилен сверхнизкой молекулярной массы (ULMWPE или PE-WAX)
  • Высокомолекулярный полиэтилен (HMWPE)
  • Полиэтилен высокой плотности (HDPE)
  • Сшитый полиэтилен высокой плотности (HDXLPE)
  • Сшитый полиэтилен (PEX или XLPE)
  • Полиэтилен средней плотности (MDPE)
  • Линейный полиэтилен низкой плотности (LLDPE)
  • Полиэтилен низкой плотности (LDPE)
  • Полиэтилен очень низкой плотности (VLDPE)

Полиолефин и полиэтилен. В чем разница

  1. В чем разница между Полиолефин и Полиэтилен?
  2. Полиолефин — это материал, состоящий только из атомов углерода и водорода. Когда молекула полиолефина связана более сложным образом, у вас есть множество материалов, изготовленных из полиолефинового материала. Полиолефин  материалы, такие как полиэтилен, полипропилен и полибутен , имеют более сложные олефиновые разветвления, чем простые полиолефины.

Например,   Полибутен  – это жидкий полимер, используемый в герметиках, синтетическом каучуке и смазочных материалах. Полиэтилен  используется для изготовления таких продуктов, как термоусадочная пленка и различные пластиковые листы. Полипропилен — это твердая смола, используемая в ковровых покрытиях, упаковке пищевых продуктов и электронике. Не смущайтесь, если пластиковая пленка называется «полиолефин». То, что это полиолефин, не означает, что это пластик высшего качества. В конце концов, теперь вы знаете, что пластиковая пленка состоит из Полиолефин .

Как измерить мил?

Вопрос:   Как вы измеряете мил?

Ответ:   Для пластиковой пленки в промышленности используется инструмент, называемый микрометром.

Какой толщины мил и что это такое?

Вопрос:   Какая толщина в миле и что это такое?

Ответ:   Мил — это единица длины, равная одной тысячной (10  -3 ) дюйма (0,0254 миллиметра). Он используется в мире пластиковых пленок для определения толщины пленки.

1 мил    = 0,001 дюйма

1 мил    = 0,0254 мм

1 мил    = 25,40 мкм (микрон) 10 центов), что примерно равно 1,24461 мм.

GRI- что это означает?

Вопрос:   Что обозначает GRI в отношении полиэтиленовой пленки толщиной 12 мил или различных пароизоляционных материалов/замедлителей схватывания? Научно-исследовательский институт геосинтетики.

Например, вы можете увидеть  9Стандартная спецификация 0207 GRI=GM22   , которая представляет собой метод испытаний, определяющий требуемые свойства и частоту испытаний для геомембран из полиэтилена, армированного холстом, которые используются на открытом воздухе (на открытом воздухе).

Всего комментариев: 0

Оставить комментарий

Ваш email не будет опубликован.

Вы можете использовать следующие HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>