Автоматические устройства с обратной связью: АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ | Энциклопедия Кругосвет
Содержание
АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ | Энциклопедия Кругосвет
Содержание статьи
- Понятие обратной связи.
- Принцип действия и проектирование.
- Сложные системы управления.
- Адаптация, обучение и искусственный интеллект.
АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ. С первых шагов цивилизации человек пытался механизировать труд. Он очень быстро нашел пути замены мускульной энергии механической; высшей точкой этого начального периода технического прогресса была промышленная революция 18 в. Новая эпоха началась, когда человек научился производить и распределять энергию. К 20 в. в передовых странах механическая энергия, получаемая от пара, текущей воды и электричества, в основном заменила энергию человека и животных. Когда стали доступны большие количества энергии, интерес общества сместился на управление такой энергией.
Следующий важный этап в развитии техники, называемый иногда второй промышленной революцией, начался в 1930-х годах. Эта революция была связана не с изобретением принципиально новых механических устройств, а скорее с реализацией некоторой идеи, а именно идеи саморегулирования (рис. 1), которая является фундаментальной характеристикой неисчислимых естественных процессов. Хотя существование саморегулирующихся процессов в природе было замечено людьми давно, только в 20 в. были сформулированы и систематически разработаны принципы автоматического регулирования. Применение этих принципов открыло новую эру в технике и промышленности.
См. также АВТОМАТИЗАЦИЯ.
Понятие обратной связи.
Важной особенностью большинства управляемых процессов является обратная связь. Понятие обратной связи можно легко проиллюстрировать с помощью простого примера моряка, управляющего кораблем с помощью рулевого колеса (рис. 2). Штурвальный выдерживает курс судна в соответствии с заданными командами. Этот метод управления, обозначаемый термином «управление с разомкнутым контуром», страдает несколькими серьезными недостатками. Так, при изменении характеристик привода – исполнительного механизма, изменяющего положение руля, – судно будет сбиваться с курса, если рулевой не имеет никакой информации о действительном направлении движения.
Если бы рулевой постоянно следил за курсом судна по компасу, сравнивал его с заданным и вращал штурвал так, чтобы уменьшить выявленную ошибку, судно приблизительно выдерживало бы нужный курс (рис. 3). Можно заметить, что в этом случае штурвальный выполняет три основные функции – обнаруживает отклонение действительного исполнения от заданного, принимает решение о коррекции действия и реализует его с помощью штурвала. Эти действия по обнаружению и коррекции ошибки, а также по управлению показаны на рис. 3 как обратная связь от управляемой величины к управляющей. В такой системе фигурирует не только направление движения корабля, задаваемое положением штурвала, но и само положение штурвала зависит от этого направления. Взаимозависимость двух величин – положения штурвала и курса судна – определяет концепцию, называемую в инженерной среде обратной связью, а термин «автоматические системы управления» обычно относится к автоматическим системам, построенным на этой концепции; часто такие системы называются также «системами управления с обратной связью» или «системами с замкнутым контуром».
Теперь можно дать формальное определение систем с замкнутым контуром: система с замкнутым контуром есть система, в которой истинное состояние управляемой переменной (называемое «выход») непрерывно сравнивается с желаемым состоянием (называемым «вход»), и сигнал, пропорциональный разнице между этими двумя состояниями, воздействует на управляющий элемент с целью уменьшить ошибку. В этом определении ничего не говорится об энергии, требуемой для изменения выхода, или об энергии, имеющейся на входе. Как правило, на вход системы управления подается небольшая энергия, а энергия для выхода черпается из внешнего источника. Таким образом, особенностью большинства систем автоматического управления является значительное усиление мощности.
Принцип действия и проектирование.
Автоматические системы управления могут быть разделены на две основные группы: стабилизирующие и следящие. В следящих системах (сервомеханизмах) входной сигнал меняется произвольно и зачастую непрерывно, тогда как в стабилизирующих ему задается фиксированное значение, а цель управления – сохранить выход постоянным, несмотря на флуктуации нагрузки. Термостат, у которого выходом является фиксированная температура, и стабилизатор напряжения, выходом которого служит нужное напряжение в сети, являются примерами стабилизирующих систем. В качестве примеров сервомеханизмов можно назвать радиолокационные и артиллерийские системы наведения и автопилоты, управляющие положением и направлением движения летательных аппаратов.
См. также СЕРВОМЕХАНИЗМ.
Автоматическая система управления не может функционировать без некоторой ошибки, потому что именно эта ошибка является источником управляющего сигнала. Задача проектировщика системы управления – сделать эту ошибку как можно меньше и тем самым увеличить чувствительность системы. Эта задача связана с определенными ограничениями, что становится ясно из следующего примера. Система управления с обратной связью, показанная на рис. 4, нужна для наведения тяжелого орудия с высокой точностью; она состоит из детектора ошибки, усилителя и серводвигателя. Ключевым элементом системы является прибор, который обнаруживает рассогласование угловых направлений цели и орудия, вырабатывая пропорциональный ему сигнал. Этот «сигнал ошибки», обычно очень малый, усиливается и прилагается в виде напряжения к одной из обмоток возбуждения электродвигателя, который развивает вращающий момент, пропорциональный указанному напряжению. Этот вращающий момент перемещает ствол орудия в направлении, приводящем к уменьшению ошибки.
Если направление на цель изменяется, то орудие следует за ним. Однако по инерции орудие будет проскакивать нужное положение, приводя к появлению ошибки с противоположным знаком. Это, в свою очередь, заставит серводвигатель повернуть орудие в обратном направлении. Следовательно, орудийный ствол может рыскать туда-сюда, проскакивая правильное положение. Такой режим работы системы управления называется «автоколебательным» и является принципиальным ограничением управления с обратной связью. (Например, при запаздывании сигнала обратной связи на 180° происходило бы усиление колебаний.) Поэтому главная проблема, которая встает перед проектировщиком систем управления, заключается в предотвращении неконтролируемых колебаний при одновременном сохранении высокой чувствительности системы к управляющему сигналу.
Первым очевидным решением является минимизация запаздывания сигнала обратной связи путем использования приборов с малым временем реакции. Это может улучшить устойчивость системы, но обычно не решает проблемы полностью. Кроме того, в большинстве практических ситуаций проектировщик вынужден использовать существующие элементы системы, что диктуется соображениями веса и стоимости.
Вторая и наиболее распространенная процедура – применение в контуре корректирующих звеньев (рис. 5), нейтрализующих эффект запаздывания. При отсутствии таких компенсаторов управляющий сигнал представляет собой усиленную ошибку и имеет тот же знак, что и ошибка. Если компенсатор вырабатывает составляющую сигнала, пропорциональную производной от ошибки по времени, то общий управляющий сигнал будет уменьшаться и станет отрицательным прежде, чем система «промахнется». Это воспрепятствует вхождению системы в режим автоколебаний. Такой способ компенсирующего управления называется «фазовым упреждением» или «управлением с дифференцирующей цепочкой».
Вернемся к нашему примеру об управлении курсом корабля. На любом достаточно большом корабле его реакция на поворот штурвала настолько замедленна, что, если рулевой перекладывает штурвал вправо только тогда, когда корабль явно отклоняется влево от правильного курса, это вызовет лишь увеличение амплитуды колебаний относительно курса. По этой причине рулевой должен предвидеть каждое отклонение и, чтобы уменьшить колебания, раньше перекладывать штурвал в противоположном направлении.
Другим видом компенсирующего элемента является прибор с интегрирующей цепочкой, который игнорирует малые быстро флуктуирующие сигналы ошибки и принимает во внимание только монотонную составляющую. Это уменьшает эффект обратной связи на высоких частотах, но сохраняет его силу на низких частотах. Поскольку большинство систем управления с обратной связью адекватно реагирует только на низкочастотные сигналы, такая компенсация повышает точность. В большинстве систем управления упомянутые компенсаторы могут быть механическими или электрическими, и проектировщик имеет полную свободу в их подборе для достижения наилучшей эффективности.
Еще один метод улучшения управления – введение дополнительных (вторичных) контуров обратной связи, в которых могут вырабатываться любые нужные составляющие сигнала. В конкретной ситуации проектировщику предоставляется выбор комбинации из самых последних методов, обеспечивающих правильное проектирование системы управления.
В рассмотренных выше случаях предполагается, что управляемый процесс или объект неизменны, а система управления и компенсирующие элементы подгоняются под процесс. С ростом потребности в управлении во многих отраслях промышленности и техники нет ничего необычного в том, что сами установки проектируются так, чтобы получить максимум преимуществ от использования последних достижений теории управления. В таких случаях сама установка становится частью системы управления. Действительно, по мере усложнения систем с обратной связью среди конструкторов и специалистов по управлению растет осознание того, что, хотя различные части системы, например ракеты, могут исследоваться и анализироваться независимо, сама система должна проектироваться как единое целое. Этот аспект проектирования сложных систем приобрел важное значение и получил название «системного анализа», или «системотехники».
См. также СИСТЕМОТЕХНИКА.
Сложные системы управления.
Любые самые сложные системы управления – будь то самолет, ядерный реактор или даже государство – включают функции оценки состояния, выработки сигнала обратной связи и управления. Главная задача любой системы управления – сделать выходные сигналы близкими к нужным значениям как можно быстрее и точнее. Другой важной характеристикой системы управления является ее устойчивость, т.е. ситуация, когда ее выходные сигналы не превышают заданных пределов. Следовательно, устойчивость, быстродействие и точность рассматриваются в качестве основных целей при проектировании эффективной системы управления. Однако в некоторых системах увеличение быстродействия сверх определенного предела может вызвать снижение точности и даже привести к неустойчивости. Поэтому достижение наилучшего соотношения между этими характеристиками является одной из важнейших задач проектирования системы управления.
В динамической системе, т.е. в такой системе, характеристики которой изменяются в зависимости от времени и места, три фактора осложняют задачу управления: 1) система имеет большое число входов и выходов; 2) имеется неточность в измерении характеристик или знании системы; 3) поскольку характеристики системы все время изменяются, может оказаться затруднительным расчет требуемых управляющих сигналов.
Чтобы количественно оценить влияние входов системы на ее выходы, нужна математическая модель этой системы. Для этого может быть применен компьютер. Вообще, компьютер используется во всех сложных системах, выполняя операции оценки состояния, выработки сигнала обратной связи и управления. В 1960-х годах были разработаны основы современной математической теории оптимального управления. Они позволяют генерировать управляющие сигналы, которые оптимизируют тот или иной показатель эффективности – например, время, энергию, расход топлива или стоимость – в больших системах, для которых могут быть разработаны точные математические модели.
Адаптация, обучение и искусственный интеллект.
В реальном мире большинство систем не только изменяются в зависимости от времени и места, но и не могут быть представлены точными математическими моделями. Необходимость управлять такими системами привела к созданию новых теорий адаптации, обучения и самоорганизации. Это, в свою очередь, привело к появлению сложных систем управления с обратной связью, в которых компьютер выполняет эксперименты над системой, исследует ее характеристики в процессе работы и меняет стратегию управления. Можно сказать, что такие системы управления имитируют адаптивные способности живых организмов в изменяющихся и неопределенных условиях среды. Таким образом, вообще говоря, адаптивная система управления требует двух различных операций: идентификации характеристик управляемой системы и настройки параметров управляющей системы с учетом динамики управляемой.
Другой областью исследований, оказывающей существенное влияние на проектирование сложных автоматических систем, является теория обучения. Идеи, развитые в математической психологии, могут быть применены к проектированию систем, использующих обратную связь по состоянию, что позволяет выбрать оптимальное действие из конечного набора действий. Распознавание образов – одна из форм обучения, нашедшая применение в некоторых современных системах с обратной связью. Если управляемая система имеет конечное число состояний, а параметры оптимального управления, соответствующие каждому состоянию, сохраняются в памяти компьютера, то скорость адаптации системы управления может быть существенно повышена с помощью устройства распознавания. Например, на космическом корабле распознавание состояния по измерениям температуры, влажности, давления, вибраций, радиации и т.п. является задачей распознавания образов.
Кроме исследований, упомянутых выше, многое делается в области разработки искусственного интеллекта, который включает более высокие уровни обратной связи, такие, как поиск информации, перевод с одного языка на другой, игры, доказательство теорем и решение комплексных проблем. Эти идеи начинают находить применение в различных областях современной науки и технологии. Электроника и компьютерные технологии, особенно разработка микропроцессоров, открыли новые пути применения теорий управления, основанных на сложных формах обратной связи. Человечество вступает в эру, где какие-либо применения будут ограничиваться только состоянием теории и воображением проектировщика.
См. также ИНТЕЛЛЕКТ ИСКУССТВЕННЫЙ; КОМПЬЮТЕР; ЭЛЕКТРОННАЯ ПРОМЫШЛЕННОСТЬ; ИНФОРМАЦИИ НАКОПЛЕНИЕ И ПОИСК; ИНФОРМАЦИИ ТЕОРИЯ.
Управление с обратной связью
Тема урока: Управление с обратной связью
Цели урока: первичное ознакомление, отработка и осознание теоретических моделей и понятий, выявление и анализ существенных и устойчивых связей и отношений между объектами и процессами, анализировать систему отношений в живой природе и технических системах с позиций управления, определять в простых ситуациях механизмы прямой и обратной связи.
Ход урока
Организационный момент
Актуализация опорных знаний
Фронтальный опрос
Что такое управление?
Кто автор науки «Кибернетика»
В каком году она появилась?
Изучение нового материала
Информатика – это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.
Часто возникает путаница в понятиях “информатика” и “кибернетика”. Попытаемся разъяснить их сходство и различие.
Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.
Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.
Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники, что, несомненно, сужает ее, казалось бы, обобщающий характер. Между этими двумя дисциплинами провести четкую границу не представляется возможным в связи с ее размытостью и неопределенностью, хотя существует довольно распространенное мнение, что информатика является одним из направлений кибернетики.
Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники. Кибернетика и информатика, внешне очень похожие дисциплины, различаются, скорее всего, в расстановке акцентов:
в информатике – на свойствах информации и аппаратно-программных средствах ее обработки;
в кибернетике – на разработке концепций и построении моделей объектов с использованием, в частности, информационного подхода.
Жизнедеятельность любого организма или нормальное функционирование технического устройства связаны с процессами управления. Процессы управления включают в себя получение, хранение, преобразование и передачу информации.
В повседневной жизни мы встречаемся с процессами управления очень часто:
пилот управляет самолетом, а помогает ему в этом автоматическое устройство– автопилот;
директор и его заместители управляют производством, а учитель – обучением школьников;
процессор обеспечивает синхронную работу всех узлов компьютера, каждым его внешним устройством руководит специальный контроллер;
без дирижера большой оркестр не может согласованно исполнить музыкальное произведение
хоккейная или баскетбольная команда обязательно имеет одного или нескольких тренеров, которые организуют подготовку спортсменов к соревнованиям.
Управление – это целенаправленное взаимодействие объектов, одни из которых являются управляющими, а другие – управляемыми. Модели, описывающие информационные процессы управления в сложных системах, называются информационными моделями процессов управления. В любом процессе управления всегда происходит взаимодействие 2-х двух объектов – управляющего и управляемого, которые coединены каналами прямой (рисунок 1) и обратной связи (рисунок 2). По каналу прямой связи передаются управляющие сигналы, а по каналу обратной связи – информация о состоянии управляемого объекта.
Системы, изучаемые в кибернетике, могут быть очень сложными, включающими в себя множество взаимодействующих объектов. Однако для понимания базовых понятий теории можно обойтись простейшей из таких систем, которая содержит всего два объекта – управляющий и исполнительный (управляемый). Примером может служить, например, система, состоящая из светофора и автомобиля (разомкнутая), полицейского и автомобиля (замкнутая).
В простейшем случае управляющий объект посылает свои команды исполнительному объекту, без учета его состояния. В этом случае воздействия передаются только в одном направлении, такая система называется разомкнутой.
Разомкнутыми системами являются всевозможные информационные табло на вокзалах и аэропортах, которые управляют перемещениями пассажиров. К рассматриваемому классу систем можно сгнести и современные программируемые бытовые приборы.
Как правило, описанная схема управления не очень эффективна и нормально работает только до возникновения экстремальных условий. Так, при больших потоках транспорта возникают пробки, в аэропортах и вокзалах приходится дополнительно открывать справочные бюро, в микроволновой печи при неправильной программе может произойти перегрев и. т. п.
Более совершенные системы управления отслеживают результаты деятельности управляемой системы. В таких системах дополнительно появляется ещё один информационный поток – от объекта управления к системе управления; его принято называть обратной связью. Именно по каналу обратной связи передаются сведения о состоянии объекта и степени достижения (или, наоборот, не достижения) цели управления.
В том случае, когда управляющий объект получает информацию о реальном положении управляемого объекта по каналу обратной связи и производит необходимые перемещения по прямому каналу управления, система управления называются замкнутой.
Главным принципом управления в замкнутой системе является выдача управляющих команд в зависимости от получаемых сигналов обратной связи. В такой системе управляющий объект стремится скомпенсировать любое отклонение управляемого объекта от состояния, предусмотренного целями управления.
Обратную связь, при которой управляющий сигнал стремится уменьшить (скомпенсировать) отклонение от некоторой поддерживаемой величины, принято называть отрицательной, если увеличить – положительной.
В зависимости от степени участия человека в процессе управления системы управления деется на три класса:
автоматические,
неавтоматические,
автоматизированные.
В системах автоматического управления все процессы, связанные с получением информации о состоянии управляемого объекта, обработкой этой информации, формированием управляющих сигналов и пр., осуществляются автоматически в соответствии с представленной на рисунке 2 замкнутой схемой управления. В подобных системах не требуется непосредственное участие человека. Системы автоматического управления используются на космических спутниках, на опасном для здоровья человека производстве, в ткацкой и литейной промышленности, в хлебопекарнях, при поточном производстве, например при изготовлении микросхем, и пр.
В неавтоматических системах управления человек сам оценивает состояние объекта управления и на основе этой оценки воздействует на него. С такими системами вы сталкиваетесь постоянно в школе и дома. Дирижер управляет оркестром, исполняющим музыкальное произведение. Учитель на уроке управляет классом в процессе обучения.
В автоматизированных системах управления сбор и обработка информации, необходимой для выработки управляющих воздействий, осуществляется автоматически, при помощи аппаратуры и компьютерной техники, а решение по управлению принимает человек. Например, рабочий металлорежущего станка производит его установку и включение, остальные процессы выполняются автоматически. Автоматизированная система продажи железнодорожных или авиационных билетов, льготных проездных билетов в метрополитене работает под управлением человека, который запрашивает у компьютера необходимую информацию и на ее основе принимает решение о продаже.
Тематический диктант.
Кто, где и когда провозгласил рождение новой науки связанной с разработкой теории управления?
Что такое управление?
Изобразить схему процесса управления без обратной связи, привести примеры.
Изобразить схему процесса управления с обратной связью, привести примеры.
Что называется обратной связью?
Виды обратной связи.
Перечислить три класса процессов управления.
Домашнее задание:
§ 2 стр. 13 – 17 задание 5 – 8 стр. 16
Автоматизация | Технология, типы, рост, история и примеры
Жаккардовый ткацкий станок
Смотреть все СМИ
- Ключевые люди:
- Жак де Вокансон
- Похожие темы:
- компьютерно-интегрированные производства
машинное программирование
автоматическое производство
программируемая автоматика
гибкая автоматизация
Просмотреть весь связанный контент →
Сводка
Прочтите краткий обзор этой темы
автоматизация применение машин к задачам, которые когда-то выполнялись людьми или, все чаще, к задачам, которые иначе были бы невозможны. Хотя термин механизация часто используется для обозначения простой замены человеческого труда машинами, автоматизация обычно подразумевает интеграцию машин в самоуправляемую систему. Автоматизация произвела революцию в тех областях, в которых она была внедрена, и едва ли найдется аспект современной жизни, на который она не повлияла.
Термин «автоматизация» был придуман в автомобильной промышленности примерно в 1946 году для описания более широкого использования автоматических устройств и средств управления на механизированных производственных линиях. Происхождение слова приписывают Д. С. Хардеру, в то время техническому директору Ford Motor Company. Этот термин широко используется в производственном контексте, но он также применяется вне производства в связи с различными системами, в которых механическое, электрическое или компьютеризированное действие в значительной степени заменяет человеческие усилия и интеллект.
В общем случае автоматизацию можно определить как технологию, связанную с выполнением процесса с помощью запрограммированных команд в сочетании с автоматическим контролем обратной связи для обеспечения надлежащего выполнения инструкций. Полученная система способна работать без вмешательства человека. Развитие этой технологии все больше зависит от использования компьютеров и связанных с ними технологий. Следовательно, автоматизированные системы становятся все более изощренными и сложными. Усовершенствованные системы представляют собой уровень возможностей и производительности, которые во многих отношениях превосходят способности людей выполнять те же действия.
Технологии автоматизации созрели до такой степени, что ряд других технологий развился из них и получил собственное признание и статус. Робототехника — одна из таких технологий; это специализированная отрасль автоматизации, в которой автоматическая машина обладает определенными антропоморфными или человекоподобными характеристиками. Наиболее типичной человеческой характеристикой современного промышленного робота является его механическая рука с приводом. Рука робота может быть запрограммирована на выполнение последовательности движений для выполнения полезных задач, таких как загрузка и разгрузка деталей на производственной машине или выполнение последовательности точечных сварок на листовых частях кузова автомобиля во время сборки. Как показывают эти примеры, промышленные роботы обычно используются для замены людей в фабричных операциях.
Britannica Quiz
Машиностроение и производство
От сверления отверстий и перевозки грузов до автомобильных двигателей и их производства — поработайте над этими вопросами и проверьте свои знания в области машиностроения и производства в этой викторине.
В этой статье рассматриваются основы автоматизации, включая ее историческое развитие, принципы и теорию работы, применение на производстве и в некоторых сферах услуг и отраслях, важных в повседневной жизни, а также влияние на человека и общество в целом. В статье также рассматривается разработка и технология робототехники как важная тема в области автоматизации. Связанные темы см. в разделе Информатика и обработка информации.
Историческое развитие автоматизации
Технология автоматизации развилась из родственной области механизации, начало которой положила промышленная революция. Механизация относится к замене силы человека (или животного) механической силой той или иной формы. Движущей силой механизации была склонность человечества к созданию инструментов и механических устройств. Здесь описаны некоторые важные исторические разработки в области механизации и автоматизации, приведшие к созданию современных автоматизированных систем.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Ранние разработки
Первые инструменты из камня представляли собой попытки доисторического человека направить свою физическую силу под контроль человеческого разума. Тысячи лет, несомненно, потребовались для разработки простых механических устройств и машин, таких как колесо, рычаг и шкив, с помощью которых можно было увеличить силу человеческих мышц. Следующим расширением стала разработка механических машин, для работы которых не требовалась человеческая сила. Примеры этих машин включают водяные колеса, ветряные мельницы и простые устройства с паровым приводом. Более 2000 лет назад китайцы разработали отбойные молотки, приводимые в движение проточной водой и водяными колесами. Первые греки экспериментировали с простыми реактивными двигателями, работающими от пара. Механические часы, представляющие собой довольно сложный узел с собственным встроенным источником питания (гирей), были разработаны около 1335 года в Европе. Ветряные мельницы с механизмами автоматического поворота парусов были разработаны в средние века в Европе и на Ближнем Востоке. Паровой двигатель стал крупным достижением в развитии механических машин и положил начало промышленной революции. В течение двух столетий, прошедших с момента появления паровой машины Уатта, были изобретены механические двигатели и машины, получающие энергию от пара, электричества, химических, механических и ядерных источников.
Каждая новая разработка в истории механических машин влекла за собой повышенные требования к устройствам управления для использования мощности машины. Самые ранние паровые двигатели требовали, чтобы человек открывал и закрывал клапаны, чтобы сначала впустить пар в поршневую камеру, а затем выпустить его. Позже был разработан механизм золотникового клапана для автоматического выполнения этих функций. Единственная потребность человека-оператора заключалась в том, чтобы регулировать количество пара, которое контролировало скорость и мощность двигателя. Это требование человеческого внимания при работе паровой машины было устранено регулятором летающих шаров. Это устройство, изобретенное Джеймсом Уаттом в Англии, состояло из утяжеленного шара на шарнирном рычаге, механически соединенного с выходным валом двигателя. По мере увеличения скорости вращения вала центробежная сила заставляла утяжеленный шар двигаться наружу. Это движение управляло клапаном, который уменьшал подачу пара в двигатель, тем самым замедляя двигатель. Регулятор летающего шара остается элегантным ранним примером системы управления с отрицательной обратной связью, в которой увеличение выходной мощности системы используется для снижения активности системы.
Отрицательная обратная связь широко используется как средство автоматического управления для достижения постоянного уровня работы системы. Типичным примером системы управления с обратной связью является термостат, используемый в современных зданиях для контроля температуры в помещении. В этом устройстве понижение температуры в помещении приводит к замыканию электрического выключателя, в результате чего нагреватель включается. При повышении температуры в помещении выключатель размыкается и подача тепла отключается. Термостат можно настроить на включение нагревателя при любой заданной температуре.
Еще одним важным событием в истории автоматизации стал жаккардовый ткацкий станок (см. фотографию), который продемонстрировал концепцию программируемой машины. Около 1801 года французский изобретатель Жозеф-Мари Жаккард изобрел автоматический ткацкий станок, способный создавать сложные узоры на текстиле, управляя движением множества челноков с разноцветными нитями. Выбор различных рисунков определялся программой, содержащейся в стальных картах, в которых были пробиты отверстия. Эти карты были предками бумажных карт и лент, которыми управляют современные автоматические машины. Концепция программирования машины получила дальнейшее развитие позже в 19 веке.век, когда Чарльз Бэббидж, английский математик, предложил сложную механическую «аналитическую машину», которая могла бы выполнять арифметические операции и обработку данных. Хотя Бэббидж так и не смог завершить его, это устройство было предшественником современного цифрового компьютера. См. компьютеры.
Устройство автоматического оповещения о сбоях и реагирования
Обновление от 15 августа 2021 г. Вскоре после публикации этого обзора наше устройство SplitSecnd перестало распознавать тест оповещения о резком резком движении. Мы отправили эксклюзивному дистрибьютору, Mito Corporation, видео, на котором SplitSecnd стучит по бедру тестировщика Нила Уайнна (рекомендуемый способ подтвердить распознавание аварии) и не инициирует предупреждение о сбое. Представитель Mito сообщил нам, что они обращаются к производителю за помощью. Прошло три недели, и Мито сообщил нам, что производитель устройства SplitSecnd не отвечает на запросы Мито о помощи и руководстве. Мы больше не можем рекомендовать устройство SplitSecnd. Несколько месяцев назад мне позвонил друг-водитель и спросил, не сталкивался ли я когда-нибудь с автоматической системой оповещения о столкновении мотоциклов, как в некоторых автомобилях. Он рассказал мне, что его друг сбежал с дороги в кювет и пролежал там почти 10 часов, прежде чем его спасли. Я напомнил своему другу о своих обзорах Somewear Global Hotspot с реагированием центра экстренного вызова и Garmin Montana 700i с inReach GPS с реагированием центра экстренного вызова. Оба требуют, чтобы пользователь активно нажимал кнопку SOS.
Очевидно, его друг был слишком ранен, чтобы сделать это. Он просил что-то полностью автоматизированное для поисково-спасательных операций. Мне стало интересно, существует ли такое устройство. Собрал в поисковике нужную комбинацию слов и нашел блок автоматического обнаружения и реагирования на сбои SplitSecnd. Он распространяется Mito Corporation, крупной дистрибьюторской компанией послепродажного обслуживания автомобилей в Индиане. Там же находится служба поддержки клиентов. Устройство SplitSecnd находится в литом пластиковом футляре размером примерно с половину сигаретной пачки. Он надежно подключается к вспомогательной вилке на 12 В, которая питается от любой розетки прикуривателя на 12 В. SplitSecnd включается при запуске автомобиля и выключается через 15 минут после того, как автомобиль выключается или отключается от сети. SplitSecnd имеет встроенный спикерфон, который подключается ко всем сотовым сетям. Когда он распознает «аварию» с помощью своего шестиосевого акселерометра, он отправляет информацию о местоположении и аварии в круглосуточный колл-центр компании. Затем колл-центр немедленно набирает номер вашего устройства, чтобы установить разговор с использованием громкой связи SplitSecnd. Если оператор колл-центра не может с вами связаться, обратитесь к самому местному 911 система находится в контакте. Ваше точное местоположение вместе с описанием вашего автомобиля передается властям. После просмотра всего веб-сайта SplitSecnd становится очевидным, что устройство предназначено для использования в автомобиле. Тем не менее, мне было любопытно узнать, можно ли его адаптировать для использования на мотоцикле, поскольку у моего Yamaha Venture есть розетка на 12 В. продавали агрегат. Они сказали мне заранее, что не знают, как он будет реагировать на дорожные опасности, с которыми мы сталкиваемся каждый день на уличных велосипедах. Мы не хотели, чтобы устройство на моем Venture вызывало поиск и спасение во время моих испытаний, поэтому направил исходящий вызов службы экстренной помощи с устройства на мой мобильный телефон. Будучи компанией по оказанию помощи при авариях, SplitSecnd была обеспокоена тем, что ее группа реагирования не будет уведомлена, если я действительно потерплю аварию. Я заверил их, что готов рискнуть, потому что мы не знали, получим ли мы ложные предупреждения о сбоях и если да, то когда. Я прошел активацию нового продукта, которая запускается на настольном компьютере. После активации он позволяет использовать устройство и приложения для смартфона для отслеживания в режиме реального времени. Я подключил устройство к розетке 12 В, которую использую для питания своего GPS. Чтобы мой GPS оставался включенным, я подключил его к вспомогательному сквозному USB-порту, который SplitSecnd удобно расположил на конце устройства. Прочные штыри SplitSecnd надежно удерживают его в розетке 12 В — они явно не хотят, чтобы он выпадал. . Я бегал по каждой кочке на дороге, которую видел. Я взял лежачих полицейских на 15 миль в час на скорости 40 миль в час. Я даже перепрыгнул через бордюр. Несмотря на все мои усилия, мне не удалось обмануть устройство, вызвав ложное срабатывание. Периодически я нажимал кнопку SOS на передней панели устройства. Мой телефон звонил каждый раз, подтверждая, что система работает. Кнопку SOS можно использовать в любой чрезвычайной ситуации, которая, по вашему мнению, требует помощи. Если вы видите пожар на обочине дороги, аварию перед вами или вам требуется неотложная медицинская помощь, вы можете нажать кнопку. Человек разговаривает с вами почти сразу через встроенную в устройство громкую связь. Вы можете обратиться в колл-центр за руководством по поломке, или если вы безнадежно заблудились. Плата за ошибочное нажатие кнопки не взимается. Пытаясь заставить устройство предупреждать, я подключил вспомогательную розетку 12 В к аккумулятору с кабелем, достаточно длинным, чтобы достать до левой седельной сумки. Хотя он отскакивал от жесткого пластикового пакета из-за сильного сотрясения, я так и не заставил его подать ложное предупреждение. Компания SplitSecnd не знает, сработает ли она при низком скольжении или съезде в канаву, поскольку она не предназначена для этого. Тем не менее, есть некоторые функции SplitSecnd, которые я считаю полезными, в дополнение к сообщениям о сбоях. В сочетании с бесплатными приложениями для iOS или Android, SplitSecnd обеспечивает отслеживание автомобиля в реальном времени, к которому он подключен. Вы можете видеть весь маршрут, где он находится в движении и где он припаркован. В приложении можно настроить геозону, которая предупреждает вас о том, что SplitSecnd покидает указанное расстояние от «дома» и когда устройство возвращается в пределах этого радиуса. Хотел бы я, чтобы у меня была эта функция, когда мои дети только начинали водить машину! «Папа, мы просто идем в торговый центр…» Устройство нельзя выключить. Единственная непрерывная мощность исходит от подключения к розетке 12 В. Если SplitSecnd отключается, его внутренняя батарея срабатывает, чтобы обеспечить работу в течение 15 минут. Это отказоустойчивая система на случай, если автомобиль попадет в аварию, которая отключит его электрическую систему, или SplitSecnd будет отключен от источника питания. SplitSecnd можно переносить с одного автомобиля на другой. Вы можете использовать его для субботней поездки, а затем подключить к машине пожилого родственника для отслеживания поездки в незнакомое место. Вы можете быть уверены, что родственник может нажать подсвеченную кнопку SOS и получить любую необходимую помощь. Рекомендуется обновить профиль вашего приложения, указав информацию о транспортном средстве, в котором он находится, чтобы аварийные службы искали черный Yamaha Venture, а не 26-дюймовый. пеший автодом. Его также можно использовать с Alexa или Google Assistant, чтобы вы знали, находится ли устройство в движении или припарковано. Таким образом, вам не придется отвлекать водителя телефонным звонком. Я проехал 20 миль в мертвой зоне мобильного телефона, а встроенный GPS по-прежнему сохранил и правильно проложил трек в приложении, когда я вернулся в зона обслуживания сотовой связи. Имейте в виду, что устройство SplitSecnd не может сообщить о вашей ситуации в чрезвычайной ситуации, если вы находитесь в полностью отключенной зоне сотовой связи. Однако, если кто-то ищет вас, по крайней мере, он увидит в приложении или веб-браузере и узнает, где вы потеряли сотовую связь. Устройство SplitSecnd стоит 19 долларов.9 для покупки и 149 долларов в год для службы мониторинга подписки. Существует единовременная плата за активацию в размере 20 долларов США. Устройство поставляется с годовой гарантией, а обслуживание клиентов осуществляется живыми людьми в Индиане. Помните, что без тарифного плана сотовой связи для мониторинга блок SplitSecnd бесполезен.
Всего комментариев: 0